

Enhancing Continuous Corn Production Under High-Residue Conditions with Starter Fluid Fertilizer Combinations and Placements

Gyles Randall
Univ. of Minnesota, Waseca

Fluid Fertilizer Forum, Scottsdale, 2-15-10

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Justification

- **Crop rotations are changing to meet rapid expansion of bio-fuel industry**
 - C-C-S and other corn-intensive rotations
 - Large amounts of biomass are produced
- **High amounts of surface residue keeps soil temps cool, which can reduce corn yield**
- **Farmers have tillage choices:**
 - moldboard plow; increases potential for erosion
 - conservation; can the yield penalty be overcome with fluid starter fertilizers?

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Objectives

- Determine the effects of fluid starter fertilizer placement and combinations of 10-34-0 & 28-0-0 on second-yr corn production under reduced tillage/high-residue conditions
- Provide management guidelines on placement and rates of UAN and APP for corn producers trying to meet the growing needs for corn grain by the ethanol industry and livestock producers.
- Present economic evaluation of fluid fertilizer treatments

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Experimental Procedures

Soil: Nicollet-Webster cl at So. Res. & Outreach Ctr.,
Waseca, MN

Design: Split plot with main plots (60 x 50') as tillage
and sub-plots (10' x 50') as combinations of
rates and placements of APP and UAN

Tillage: Fall Moldboard plow 9" deep
• 14% surface residue (May 6)
Fall Disk chisel/rip 9" deep
• 52% surface residue (May 6)

STP: 21 ppm Bray P₁ (VH)

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Starter Treatments

Placement	APP gal/A	UAN lb N/A
Zero control	0	0
Popup	5	0
2 x 0	5	0
"	5	15
"	5	30
"	5	45

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Weather

Temps: Cool May-August, GDU's 13% below normal and 28% above normal in September.

Precipitation: Below normal each month from April – September. May-Sept. growing season = 11.0" or 9.42" (46%) below normal. Available soil water from mid-August thru Sept. ranged from 40 to 25% from FMC with >80% below 3'.

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Results

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

**Chisel
5 APP 2 0
No UAN**

**Chisel
No APP
No UAN**

Chisel
5 APP Pop-up
No UAN

Chisel
5 APP 2x0
No UAN

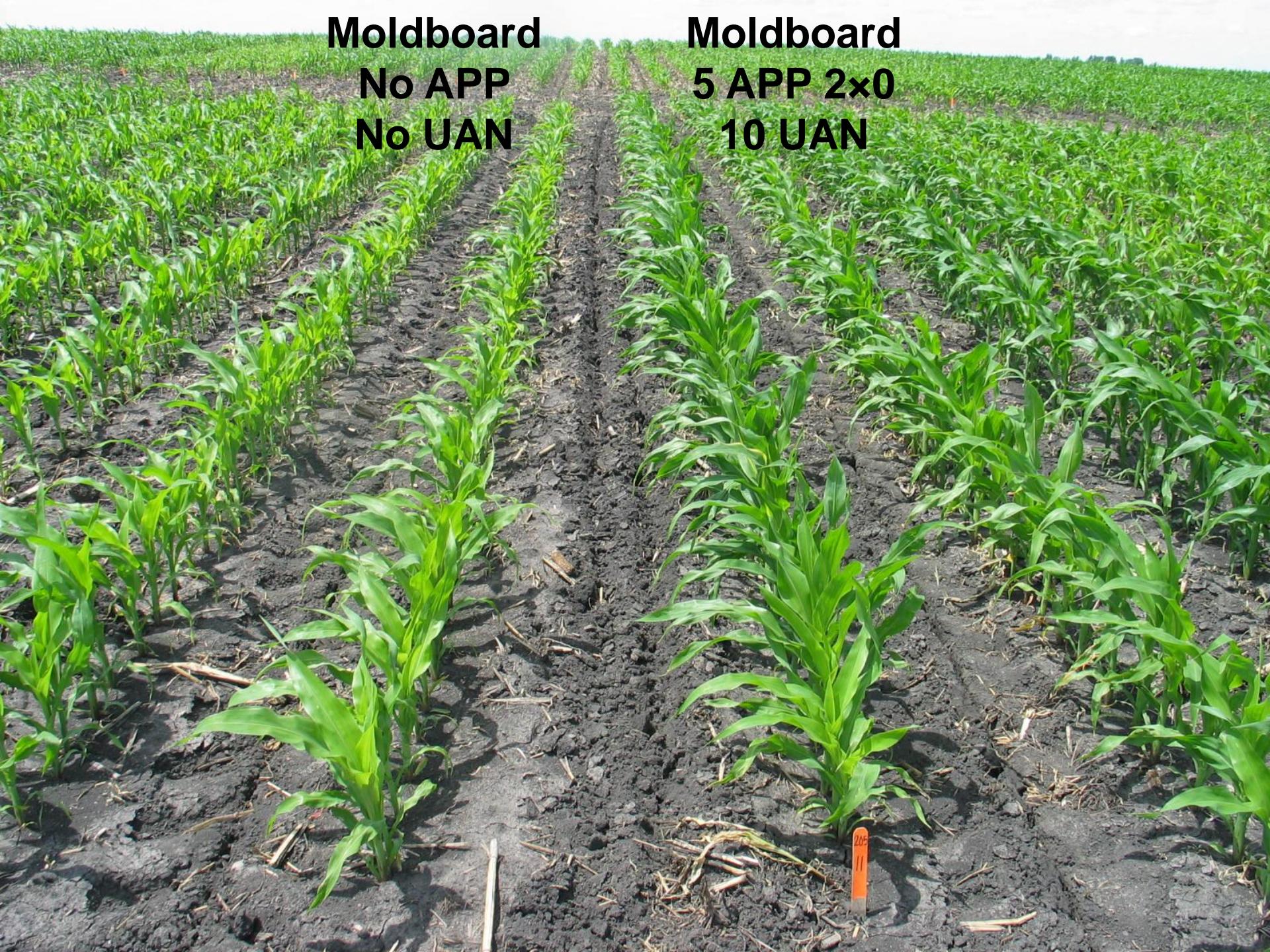
Chisel
No APP
No UAN

Chisel
5 APP 2x0
10 UAN

112
5

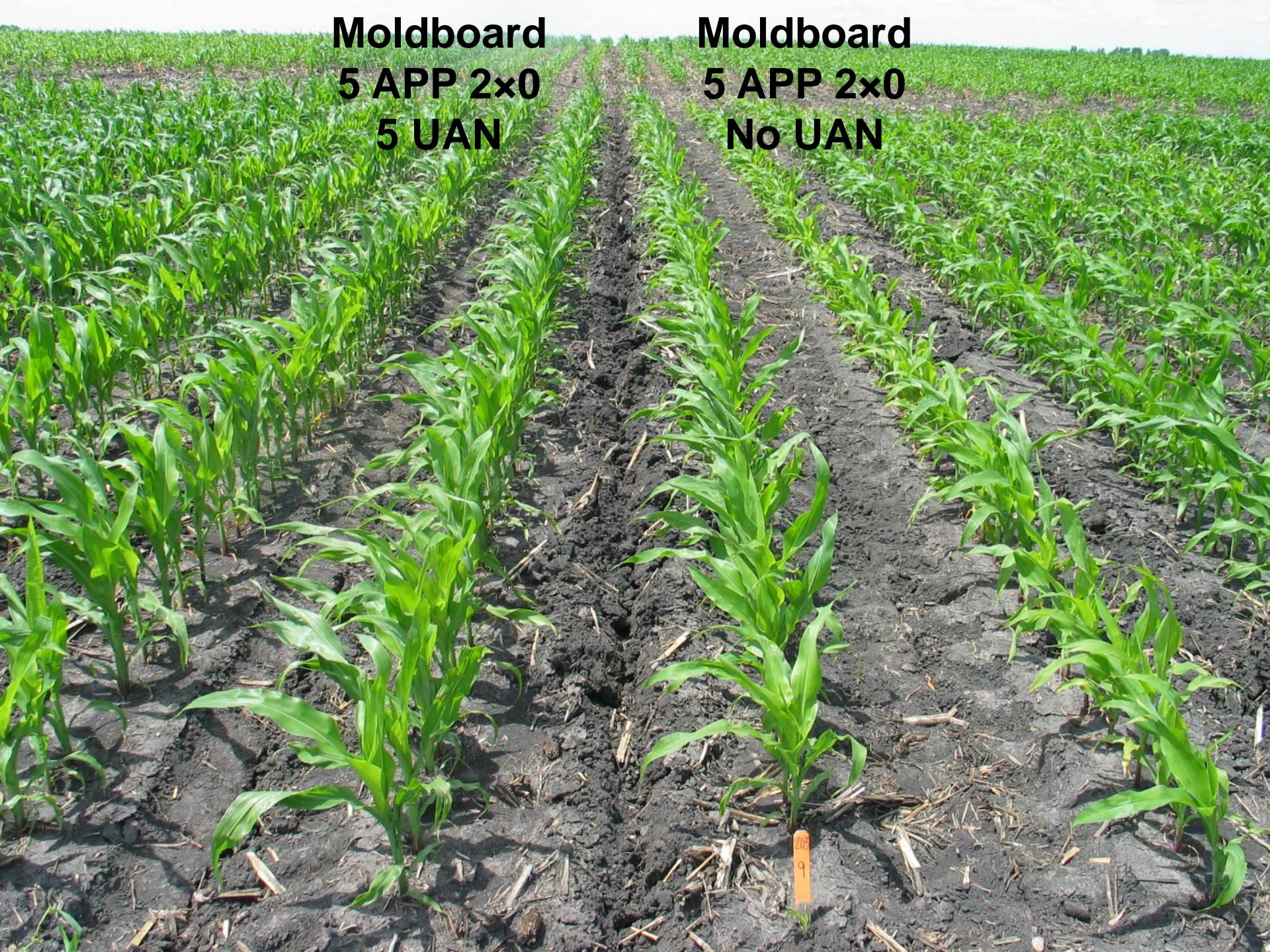
Chisel
5 APP 2x0
10 UAN

Chisel
5 APP Pop-up
No UAN


211
2

Chisel
5 APP 2x0
15 UAN

Chisel
5 APP 2x0
5 UAN


**Moldboard
No APP
No UAN**

**Moldboard
5 APP 2x0
10 UAN**

**Moldboard
5 APP 2x0
5 UAN**

**Moldboard
5 APP 2x0
No UAN**

Interactions

- There were no significant ($P=0.05$ level) interactions between Tillage System and Starter Treatment except for grain moisture.
 - thus, main effects are valid for all except grain moisture.

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Effect of tillage on small whole plant (V7) growth and uptake of N and P in 2009.

Tillage	Yield	DM	Uptake	
	lb/A		N	P
Moldboard	652		24.3	2.45
Chisel/rip	446		15.7	1.66
$P > F:$	0.022		0.021	0.040

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Effect of starter treatments on small whole plant (V7) growth and uptake of N and P in 2009.

Starter Treatment		DM	Uptake	
Placement	APP gal/A	Yield lb/A	N	P
			- - lb/A - -	
Zero-control	0	0	332	12.5 1.29
Popup	5	0	712	23.5 2.48
2 x 0	5	0	472	17.5 1.88
"	5	15	552	20.4 2.01
"	5	30	590	21.7 2.18
"	5	45	634	24.5 2.47
LSD (0.10):		92	3.5	0.35

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Effect of tillage on grain yield and moisture and uptake of N and P in 2009.

Tillage	Grain		Uptake	
	Yield bu/A	Moisture %	N	P
Moldboard	209	30.6	117	23.4
Chisel/rip	198	32.8	116	24.6
$P > F:$	0.021	0.016	0.664	0.088

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Effect of starter treatments on grain yield and uptake of N and P in 2009.

Starter Treatment			Grain	Uptake	
Placement	APP gal/A	UAN lb N/A	Yield lb/A	N - - - lb/A - - -	P
Zero-control	0	0	204	118	24
Popup	5	0	206	118	25
2 x 0	5	0	204	119	24
"	5	15	203	115	24
"	5	30	202	116	24
"	5	45	201	113	24
<i>LSD (0.10):</i>			NS	NS	NS

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Grain moisture as affected by tillage and starter fertilizer in 2009.

Placement	Starter Treatment		Tillage	
	APP gal/A	UAN lb N/A	M. Plow	Chisel/rip
Zero-control	0	0	31.0	34.8
Pop-up	5	0	29.4	32.5
2 x 0	5	0	30.0	34.8
"	5	15	30.9	31.8
"	5	30	31.3	31.9
"	5	45	31.0	31.1

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Conclusions - 2009

Tillage:

- Moldboard plow tillage increased early plant growth (V7) by 46% and grain yield by 11 bu/A.
- N and P uptake was increased in the V7 plant by 55 and 48%, respectively, by moldboard plow tillage but uptake in the grain was not affected by tillage
- Grain moisture at harvest for chisel/rip tillage (34.8%) was decreased about 3 points by APP + UAN, but for moldboard tillage (31.0%) starter fertilizer had no effect. Pop-up placement of APP was most effective.

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Conclusions - 2009

Starter fertilizers:

- In-furrow, pop-up placement of APP increased early growth (V7 stage) over the no-starter control by 150% for chisel/rip tillage and 93% for moldboard tillage.
- Averaged across tillage systems pop-up and 2 x 0 dribble placement of APP increased early growth over the no-starter control by 114 and 42%, respectively.
- Adding UAN to 2 x 0 placed APP increased early growth by 25% when averaged across N rates and tillage.
- In-furrow, pop-up placement of APP increased early growth over the 2 x 0 dribble placement of APP + 45 lb N/A as UAN by 12%.
- Grain yields were not influenced by starter fertilizer in this year when precipitation and soil moisture were limiting.

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Three-Year Results

2007-2009

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Effect of tillage on average small plant (V7) growth and uptake of N and P in 2007 - 2009.

Tillage	Yield	DM	Uptake	
		Ib/A	N	P
Moldboard	724		23.9	2.63
Chisel/rip	560		18.2	2.08
$P > F:$	0.001		0.001	0.001

No Year x Tillage interaction

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Effect of tillage on average grain yield and moisture in 2007 – 2009.

Tillage	Grain	
	Yield bu/A	Moisture %
Moldboard	191.4	23.4
Chisel/rip	184.9	24.4
$P > F$	0.001	0.009

Year x Tillage interaction was significant.

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Effect of starter treatments on average small whole plant (V7) growth and grain yield in 2007 - 2009.

Starter Treatment			DM	Grain
Placement	APP	UAN	Yield	Yield
	gal/A	lb N/A	lb/A	bu/A
Zero-control	0	0	520	184.5
Popup	5	0	752	190.4
2 x 0	5	0	534	185.9
"	5	15	642	191.5
"	5	30	656	189.5
"	5	45	748	187.1
<i>LSD (0.10):</i>			<i>46</i>	<i>4.3</i>

A significant Yr x Starter interaction for all

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Three-Year Conclusions

- Moldboard plowing increased early plant growth by 29% and grain yield by 6.5 bu/A compared to chisel/rip tillage.
- APP placed in the seed furrow as a pop-up or combined with UAN and dribbled on the soil surface increased early plant growth by 3 to 45% and grain yield by 1 to 7 bu/A on these very high P-testing soils.

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Acknowledgement

- Grateful appreciation is given to A & L Great Lakes Laboratories, Inc., Fort Wayne, IN and Olsen's Agricultural Laboratory, Inc., McCook, NE for conducting the plant analysis during this study and to the Fluid Fertilizer Foundation for their financial assistance.

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM

Thanks

Gyles Randall

<http://sroc.cfans.umn.edu>

UNIVERSITY OF MINNESOTA
Driven to DiscoverSM