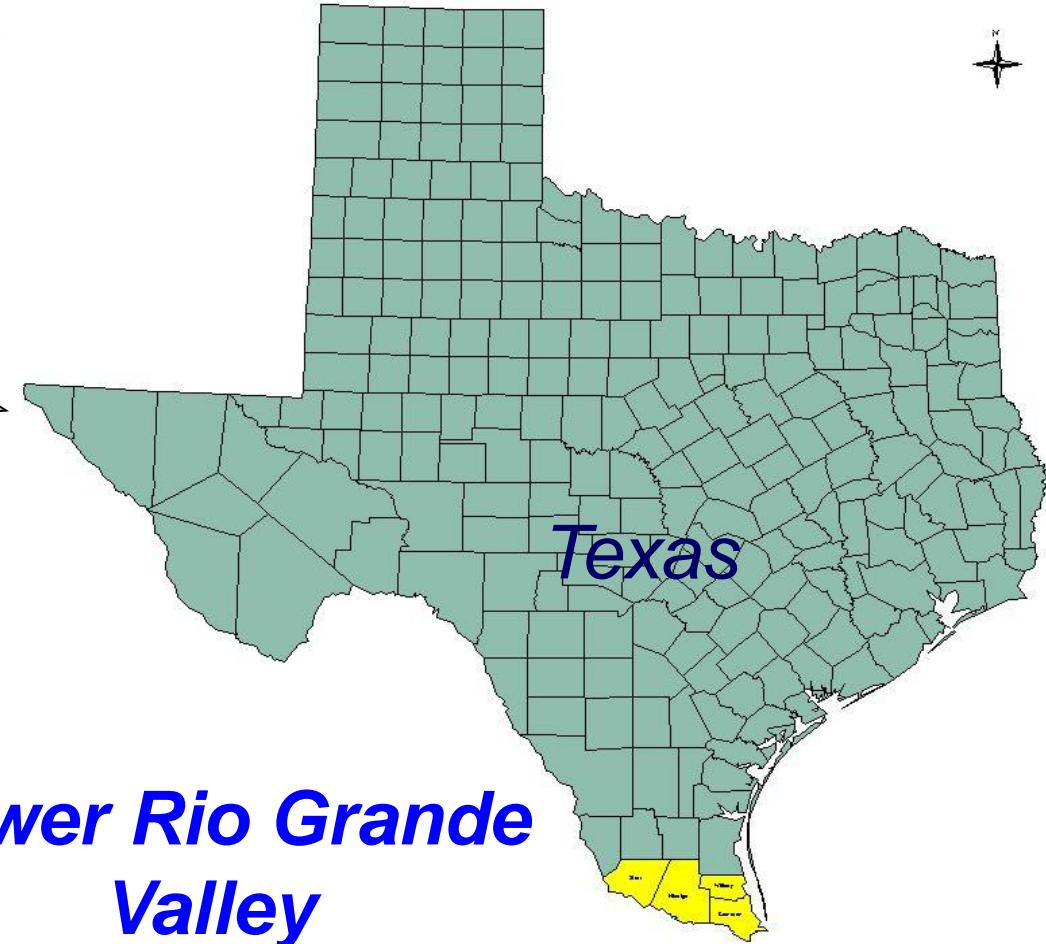
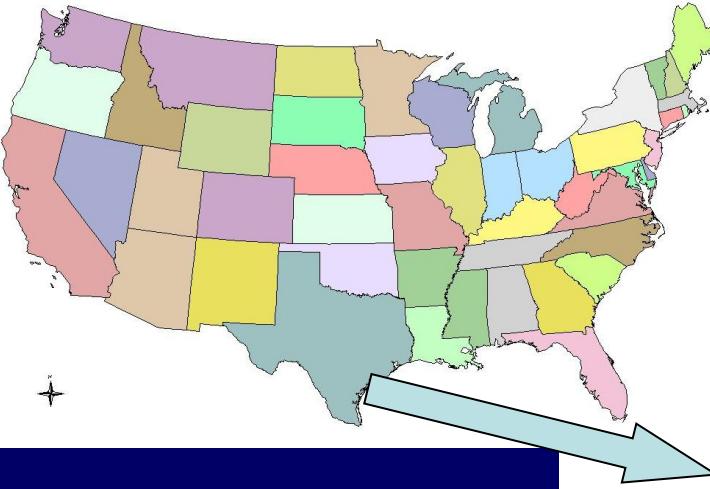


Nutrient Removal Estimates for Major Vegetables in S. Texas

John Jifon

jljifon@ag.tamu.edu



Nutrient Removal Estimates for Major Vegetables in S. Texas

John Jifon

jljifon@ag.tamu.edu

Lower Rio Grande Valley

Focus: Improving quality through (fluid) fertilizer management

Main Crops:

**Melons, Watermelons, Onions, Peppers, Citrus
(grapefruits & oranges):**

- Taste (soluble solids content)**
- Texture**
- Color**
- Nutritional and Health benefits**

The Basic Problem: Nutrient imbalance and uptake limitations

Timing is everything for uptake of quality nutrients

- *Weather conditions; Plant factors; Soil factors*

Soil chemical properties

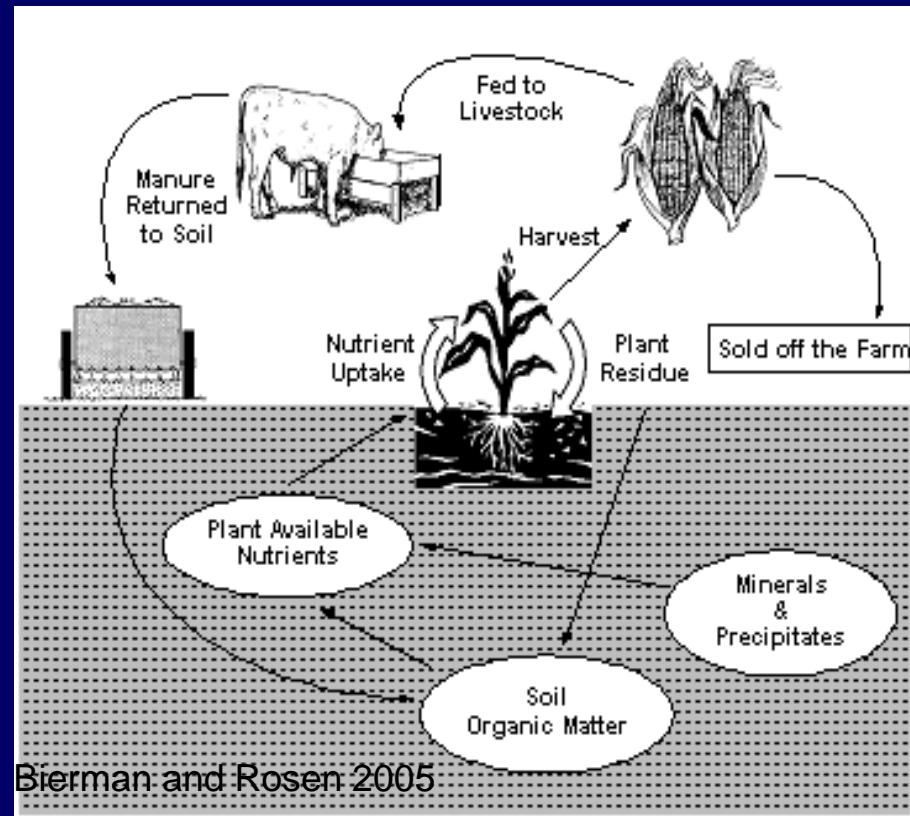
	pH	NO ₃ -N	P	K	Ca	Mg
ppm						
Average	8.2 0.1	64.3 24.2	63.8 15.9	586.6 81.5	9166.7 3739	522.4 92.1
Critical Limits	6.5	-	50.0	175.0	180	50

Others

S	16.2	0.5 ppm
Zn	7.95	0.6 ppm
Mn	110.7	2.1 ppm
B	3.7	0.21 ppm
Cu	16.5	2.1 ppm
Fe	39.0	1.2 ppm
Organic matter:	1.1	0.12 %
CEC:	56.2	0.96 meq/100g

Previous research: improving quality through fertilizer management

- Showed that supplementing soil-derived K with **foliar K applications** during the fruit development/maturation stages can improve fruit quality parameters of muskmelons grown on calcareous soils.
- Fertilizer guidelines for optimizing yield may not be the same as those for produce quality. Highlighted the need to reassess soil K management strategies to improve fruit quality especially on calcareous soils.
- Foliar K feeding was the most practical approach that growers can easily incorporate into existing foliar programs using existing equipment..... compared to soil intervention strategies (e.g. soil pH, etc)


Questions emerging

- How much K is required to assure minimum quality standards?
- How much is taken off fields with produce?
- Very little information available for vegetable crops.

Basic Plant Nutrient Cycle

- Depending on cultivar, harvestable portion, yield level, location etc, the balance between nutrient inputs and outputs can easily shift in either direction.
- Works well for Yield prediction; quality??
- Well established for major crops – little information on fruits and vegetables.

Objectives

- How much K and others do plants take up?
- How much is taken off fields with produce?
- Very little information on uptake and removal amounts by vegetable crops.

Near-term:

- Estimate nutrient (N, P, **K**, S, Ca, Mg,) removal amounts in relation to different yield expectations in sites with contrasting soil types (light vs heavy) in S. Texas.
- Characterize timing of nutrient (especially K & Ca) uptake and partitioning among harvested & non-harvested biomass

Long-term:

- Develop nutrient management guidelines to assure produce quality.

Methods - sites

Commercial fields with contrasting soil types:

Locations

Edinburg - **Brennan fine sandy loam**

Mission - **Delfina fine sandy loam**

Santa Ana - **Hidalgo sandy clay loam**

Weslaco - **Harlingen clay**

Cultural Practices

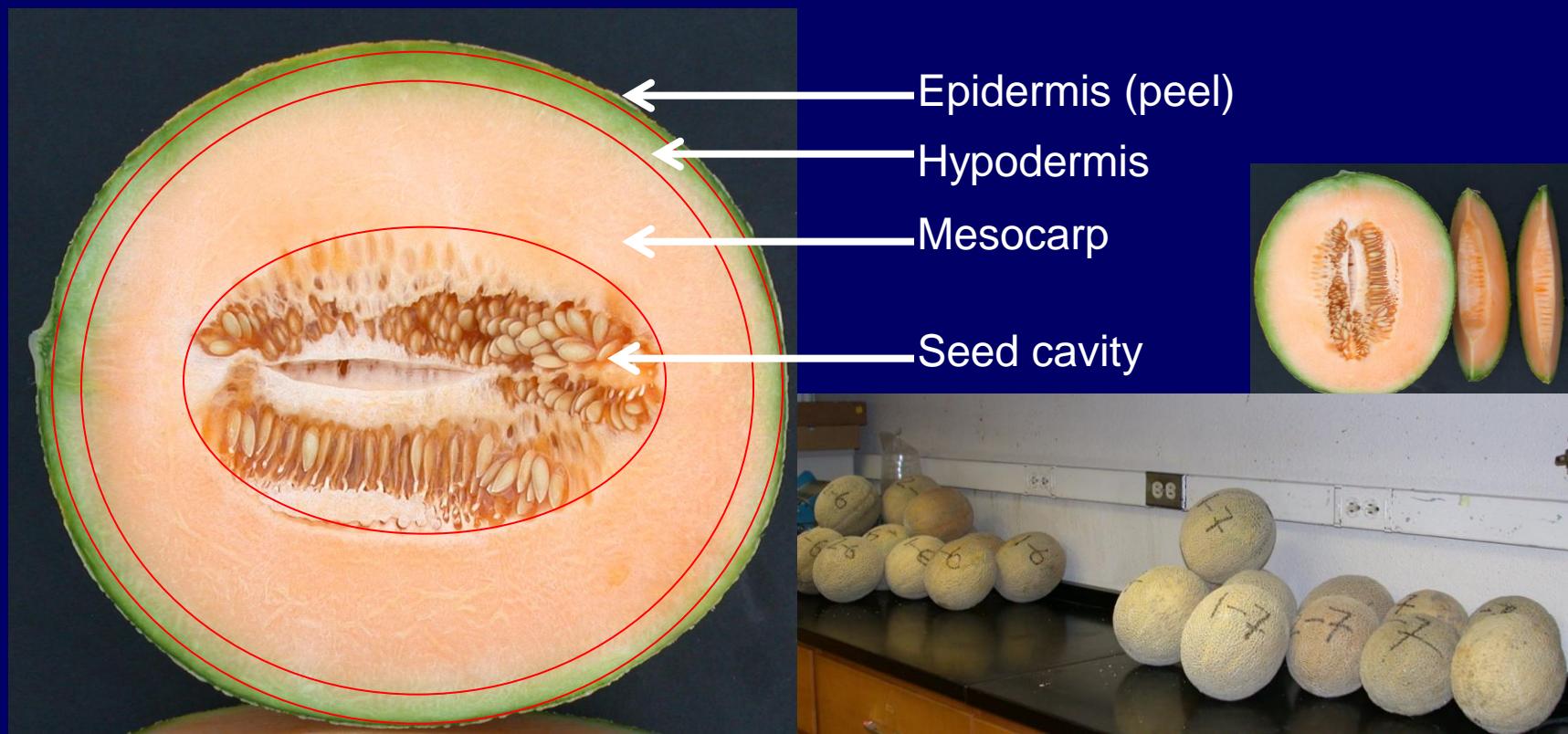
Raised beds

Plastic mulch

Subsurface drip irrigation

Fluid fertilizers through drip

Season: early February – mid May


Methods - measurements

- Pre-plant soil analysis
- Biomass & nutrient partitioning
- Yield estimates

Methods - measurements

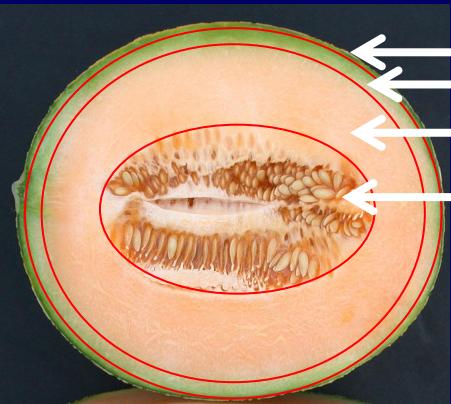
- Fruit size (fresh wt)
- Dry matter content/partitioning
- Brix
- Fruit mineral analysis

Pre-plant soil chemical properties

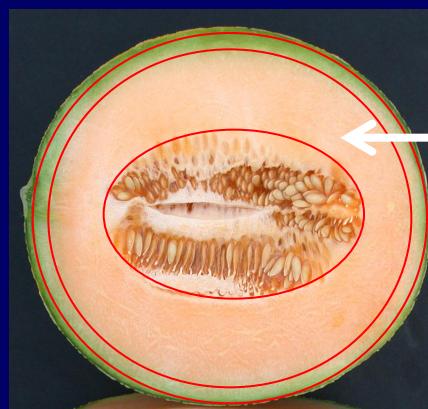
	pH	NO ₃ -N	P	K	Ca	Mg
mg·kg⁻¹						
Edinburg	8.2	33.4	110.0	558.5	2805.6	297.3
Mission	8.1	126.5	39.0	385.0	2805.6	537.8
Santa Ana	8.3	19.5	46.5	779.0	13807.8	507.3
Weslaco	8.3	78.0	59.8	624.0	17247.8	747.3
Critical Limits	6.5	-	50	175	180	50

Fruit size, Brix, and mineral contents in edible mesocarp tissue

	Frwt	Brix	N	P	K	Ca	Mg
	Lbs	%			mg·kg ⁻¹		
Edinburg	4.3	9.1	9.0	1.5	17.9	11.8	1.1
Mission	4.2	9.5	10.1	1.7	20.3	12.7	1.3
Santa Ana	4.6	11.5	12.6	2.1	25.2	13.5	1.6
Weslaco	4.6	10.6	11.9	2.0	23.9	14.8	1.5


9s
~6"
40lb-bx

Nutrients removed with fruits


Location	Edinburg	Mission	Santa Ana	Weslaco
Fruit yield level (tons/ac)	9.5	9.78	12.4	10.2
lbs/ac				
N	65.8	71.1	106.3	88.6
P	14.3	16.1	19.3	15.2
K	141.0	142.6	223.2	190.45
Ca	66.1	75.8	111.3	98.1
Mg	12.3	13.7	24.7	23.9

Nutrients removed in edible mesocarp tissue

Location	Edinburg	Mission	Santa Ana	Weslaco
Fruit yield level (tons/ac)	9.5	9.78	12.4	10.2
lbs/ac				
N	18.4	21.8	37.7	31.3
P	3.1	3.6	6.3	5.2
K	36.8	43.6	75.4	62.5
Ca	24.7	27.6	40.4	38.9
Mg	2.3	2.7	4.7	3.9

Mesocarp

Comparisons with limited available data

	N	P ₂ O ₅	K ₂ O	Ca
¹ IPNI	80.0	25.0	140.0	
² Knott's	95.0	17.0	120.0	
?Europe?	45-107	13-22	45-178	44-64
Edinburg	65.8	14.3	141	66.1
Mission	71.1	16.1	142.6	75.8
Santa Ana	106.3	19.3	223.2	111.3
Weslaco	88.6	15.2	190.45	98.1

¹IPNI, 2001;

²Maynard and Hochmuth, 2007- Knott's Handbook

Summary

- Removal amounts very variable could be due to interacting soil, plant and weather factors
- 2009 exceptionally dry – data over multiple years under different weather conditions needed
- [[develop fertilizer guidelines to improve quality]]

Related studies

Foliar K nutrition:

- **Citrus: Effects of K sources, KTS, K-Metalosate, PeaK,**
- **Additives (polymers) to improve uptake of foliar K**
- **Improving P uptake efficiency: Avail; polymers.**

Acknowledgements:

Growers:

Fred Schuster

Schuster Farms, Inc.

San Juan, TX

Jimmy Bassetti

J&D Produce

Edinburg, TX

INTERNATIONAL
PLANT NUTRITION
INSTITUTE

ICL Premium Fertilizers NA

THANK YOU