

Fluid Fertilizer's Role in Sustaining Soils Used for Bio-fuels Production

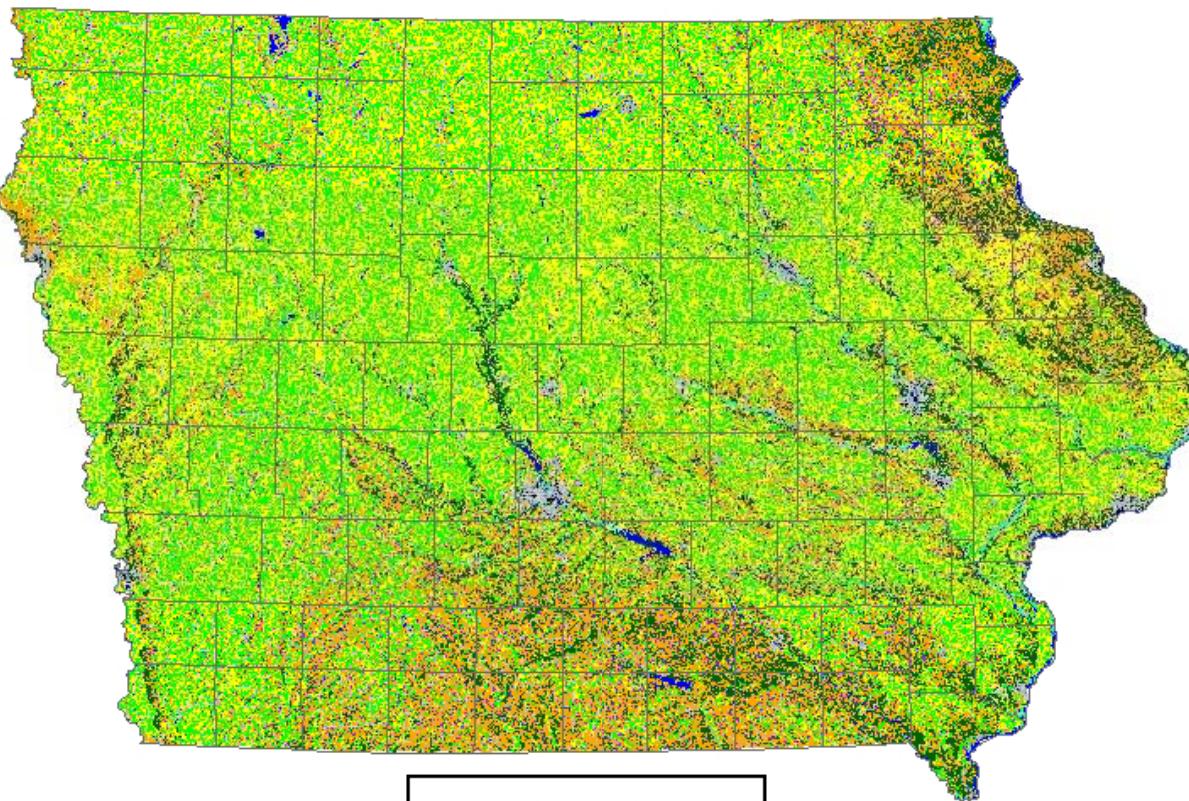
John Kovar & Doug Karlen
USDA-ARS

National Soil Tilth Laboratory

United States
Department of Agriculture

Agricultural
Research
Service

<http://www.ars.usda.gov/mwa/ames/nstl>


Some Challenges:

- Nutrient management problems (esp. K and S) in Midwestern soils will likely increase as producers reduce tillage, increase the frequency of corn production, and/or harvest crop residues for bio-fuels production
- The bio-fuels industry is currently using estimates to determine the amount of crop residue that must remain on the land to sustain both the farming and ethanol production enterprises
- To provide more quantitative guidelines, soil management studies focusing on tillage, fertilizer rates and placement, cover crops, and other management questions are needed

2006 Iowa Cropland Data Layer

Categories

- Com
- Soybeans
- Other Crops
- Other Small Grains & Hay
- Idle Cropland
- Pasture/Nonag/CRP
- Woods
- Water
- Urban
- Clouds

Objectives for 2007

- To evaluate the performance of several S fertilizers as S sources for corn grown on low organic matter soils in Iowa
- To initiate a comprehensive tillage, nutrient management, and crop residue removal study

Sulfur Response: Site Characteristics

- Eroded side slopes
- Clarion loam/silt loam (Typic Haplaquolls)
- previous crop was soybean
- plot size 12.5 ft. (5 rows) x 250 ft. (x 90 ft. in 2007)
- RCBD with 4 reps
- Spring tillage: disk + field cultivator
- N fertilizer applied at planting + spoke wheel UAN (supplemental to 155 lb/A)
- Corn (Pioneer 36N71) planted 21 April 2006 at 30,000 plants/A
- Corn (Fontanelle 4693) planted 2 May 2007 at 32,000 plants/A

S Fertilizer Treatments

Control

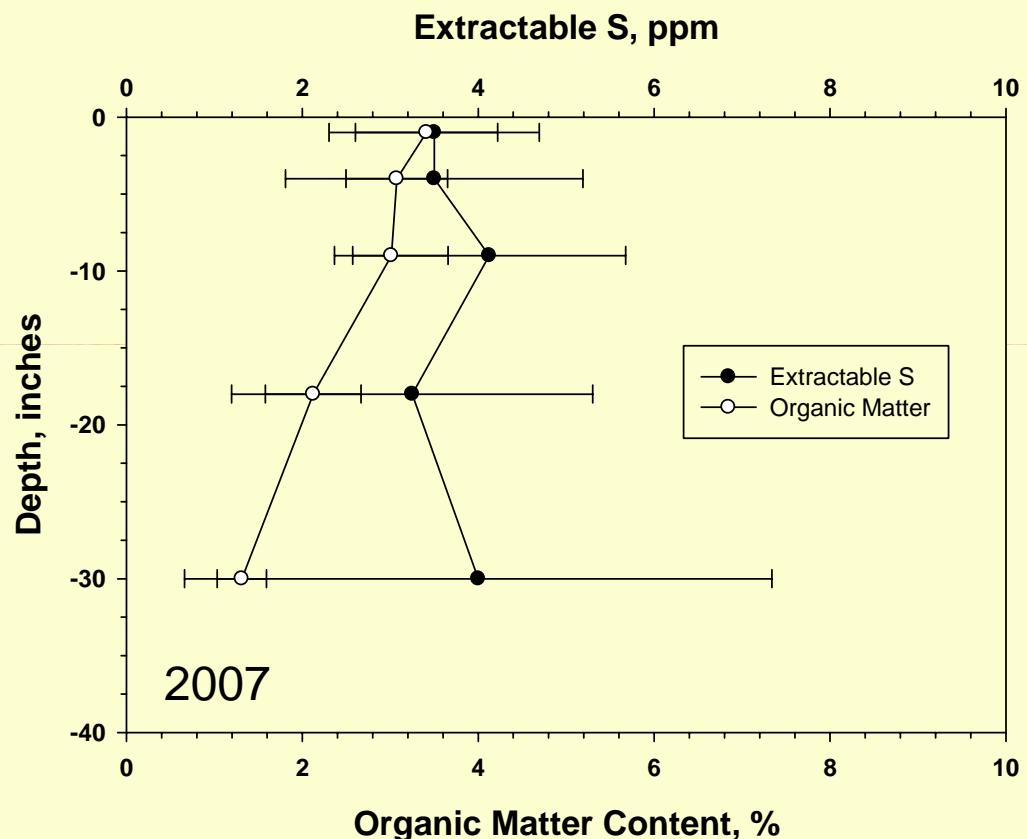
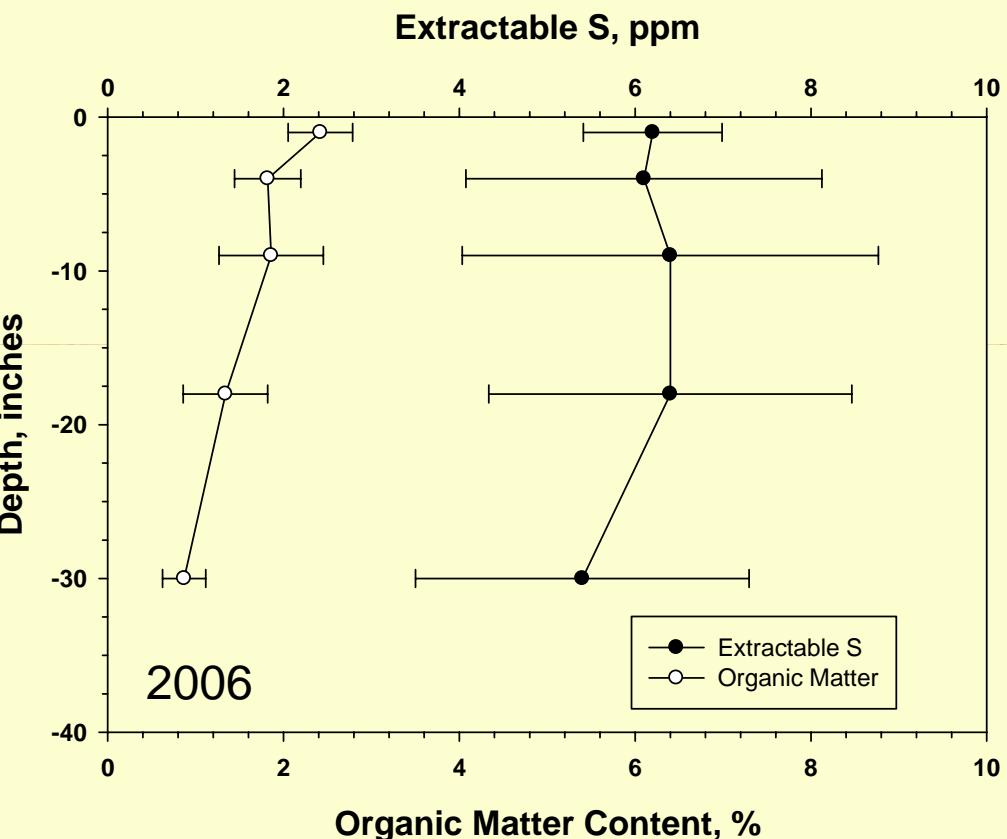
30 lb S/A; 13-33-0-15S; 2x3

30 lb S/A; 21-0-0-24S; 2x3

30 lb S/A; 12-0-0-26S; 2x0

2006 Initial Soil Test Levels

Soil Test	Composite	Range
Bray 1 P, ppm	35 (VH)	15 (OPT) – 60 (VH)
Exch. K, ppm	180 (VH)	123 (OPT) – 304 (VH)
Exch. Ca, ppm	2320	1881 – 2585
Exch. Mg, ppm	232	192 – 275
Extractable S, ppm	3.6	1 – 7
pH	6.9	6.2 – 7.2
Organic Matter*, %	2.2	1.9 – 2.5



* Ignition Method

2007 Initial Soil Test Levels

Soil Test	Composite	Range
Bray 1 P, ppm	30 (VH)	13 (OPT) – 55 (VH)
Exch. K, ppm	123 (OPT)	98 (L) – 146 (OPT)
Exch. Ca, ppm	2933	2178 – 4052
Exch. Mg, ppm	437	322 – 540
Extractable S, ppm	8.5	7 – 13
pH	6.2	5.5 – 7.4
Organic Matter*, %	3.2	2.4 – 4.4

* Ignition Method

Extractable S and Organic Matter in the Soil Profile

Sulfur Response: Measurements

- Stand counts
- Whole-plant samples at V5
- Ear-leaf samples at mid-silk
- Grain yield and moisture
- Stover yield (whole-plant hand harvest)
- Statistical analysis with GLM procedure of SAS

Effect of 30 lb S/A on Whole-Plant Dry Weight, and S, N, and P Tissue Concentrations at V5 in 2006

Treatment	Dry Weight	Nutrient		
		S	N	P
	g plant ⁻¹	-----		% -----
Control	4.3b [†]	0.17b	3.13b	0.47a
13-33-0-15S (SEF)	7.4a	0.21a	3.43a	0.46a
21-0-0-24S (AMS)	6.1ab	0.21a	3.49a	0.44a
12-0-0-26S (ATS)	5.8ab	0.23a	3.18b	0.42b

[†]Values followed by the same letter are not significantly different at the 0.05 level.

Effect of 30 lb S/A on Whole-Plant Dry Weight, and S, N, and P Tissue Concentrations at V5 in 2007

Treatment	Dry Weight	Nutrient		
		S	N	P
	g plant ⁻¹	-----		----- % -----
Control	6.0b [†]	0.16b	2.89b	0.34a
13-33-0-15S (SEF)	8.9a	0.20a	3.24ab	0.37a
21-0-0-24S (AMS)	7.2ab	0.19a	3.27a	0.31a
12-0-0-26S (ATS)	5.5b	0.18a	2.94ab	0.33a

[†]Values followed by the same letter are not significantly different at the 0.05 level.

Effect of 30 lb S/A on Corn Grain Yield, Grain Moisture, and Stover Yield in 2006

Treatment	Grain Yield [†]	Grain Moisture	Stover Yield
	bu/A	%	ton/A
Control	170	14.5	2.67
13-33-0-15S (SEF)	177	14.6	2.80
21-0-0-24S (AMS)	172	14.5	2.51
12-0-0-26S (ATS)	171	14.4	2.79
LSD _(0.05)	7.5	0.54	0.62
LSD _(0.10)	6.1	0.44	0.53

[†]Yields adjusted to 15.5% moisture.

Effect of 30 lb S/A on Corn Grain Yield, Grain Moisture, and Stover Yield in 2007

Treatment	Grain Yield [†]	Grain Moisture	Stover Yield
	bu/A	%	ton/A
Control	176	14.9	2.90
13-33-0-15S (SEF)	186	14.6	3.29
21-0-0-24S (AMS)	186	14.7	2.82
12-0-0-26S (ATS)	183	14.6	2.80
LSD _(0.05)	13	0.4	0.78
LSD _(0.10)	10	0.3	0.67

[†]Yields adjusted to 15.5% moisture.

Main Points:

- Based on two years of field trials, application of 30 lb S/A increased mean plant dry weight and whole-plant concentrations of S at the V5 growth stage.
- At mid-silk, S concentration in the tissue was below the sufficiency range of 0.21% to 0.50%, even when S fertilizer had been applied.
- Corn grain and stover yields were not increased, and grain moisture at harvest was not reduced ($p<0.05$) by S fertilizer application.
- No one S fertilizer source outperformed the others.
- The cost of replacing S removed with the grain and residue is relatively low.
- Eroded hill slopes, as found at these sites, often have relatively low levels of soil organic matter and extractable SO_4^{2-}

Whole Plant Removal

Cob & Top 50% Removal

Macro-nutrient Removal through Various Stover Harvest Scenarios in 2005

Stover Harvest Scenario	Continuous (DeKalb DKC-52-45)			Rotated (Fontanelle 5393)		
	N	P	K	N	P	K
----- kg ha ⁻¹ -----						
Whole plant	30.7	2.5	38.6	50.2	3.5	42.8
Bottom 50%	7.8	0.8	13.2	12.6	0.7	12.8
Cob & top 50%	18.5	1.5	28.9	31.2	2.6	26.4
LSD _(0.05)	3.6	0.5	11.5	8.6	1.0	10.3

Total Nutrient Replacement Cost

Stover Harvest Scenario	Average for Three Hybrids ('05 & '06)		
	\$ ac⁻¹	\$ ton⁻¹	\$ gal EtOH⁻¹
Whole plant	\$ 27.71	\$ 9.67	\$0.121[†]
Cob & top 50%	\$ 18.47	\$ 9.49	\$0.118
Bottom 50%	\$ 7.39	\$ 10.10	\$ 0.126

[†] Assumes 80 gal EtOH ton⁻¹ biomass

Bio-fuels Project Treatments

- Residue removal: 0, 50%, 90%
- Tillage: chisel plow, no-till
- Nutrient management: standard (30K plants/A), high input (45K plants/A)
- Charcoal: 0, 8700 lb/A, 16,500 lb/A
- Cover crops: annual, perennial

Bio-fuels Project Plot Plan

101
102
103
104
105
106
107
108
109
110
111

112
113
114
115
116
117
118
119
120
121
122

201
202
203
204
205
206
207
208
209
210
211

212
213
214
215
216
217
218
219
220
221
222

301
302
303
304
305
306
307
308
309
310
311

312
313
314
315
316
317
318
319
320
321
322

401
402
403
404
405
406
407
408
409
410
411

412
413
414
415
416
417
418
419
420
421
422

What's Next?

- Continue S research
- Move forward with comprehensive tillage, nutrient management, and crop residue removal study