

MICHAEL ORR

“THE BROTHER FROM ANOTHER MOTHER”
MONTANA GROW
SPECIALTY PROCESS CONSULTING

FLUID FERTILIZER FOUNDATION TECHNOLOGY ROUNDUP COUNCIL BLUFFS, IOWA

DECEMBER 6-7, 2016

Agricultural Outlook

Global Population Growth:

- Gerald Nelson, University of Illinois:
 - The world's population will continue growing through at least 2050, barring a major war or the widespread outbreak of a serious disease
- Chairman & CEO, ADM:
 - Population is projected to grow by 33% in the next 20 years, from 6 to 8 billion people, while food demand increases 50% due to higher living standards and more demand for protein.

U.S. Drought Monitor

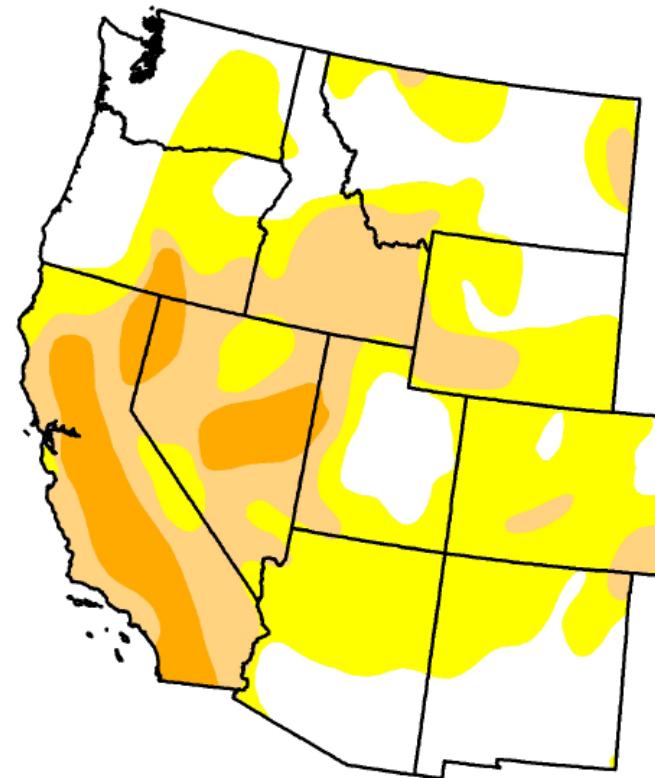
West

December 2, 2008
Valid 7 a.m. EST

Drought Conditions (Percent Area)

	None	D0-D4	D1-D4	D2-D4	D3-D4	D4
Current	32.8	67.2	29.6	8.6	0.0	0.0
Last Week (11/25/2008 map)	36.0	64.0	29.3	8.6	0.0	0.0
3 Months Ago (09/09/2008 map)	34.3	65.7	30.1	10.2	0.1	0.0
Start of Calendar Year (01/01/2008 map)	26.3	73.7	54.7	33.1	2.7	0.0
Start of Water Year (10/07/2008 map)	41.3	58.7	28.6	10.4	0.1	0.0
One Year Ago (12/04/2007 map)	26.1	73.9	54.8	32.8	2.7	0.0

Intensity:


█ D0 Abnormally Dry

█ D3 Drought - Extreme

█ D1 Drought - Moderate

█ D4 Drought - Exceptional

█ D2 Drought - Severe

The Drought Monitor focuses on broad-scale conditions.
Local conditions may vary. See accompanying text summary
for forecast statements.

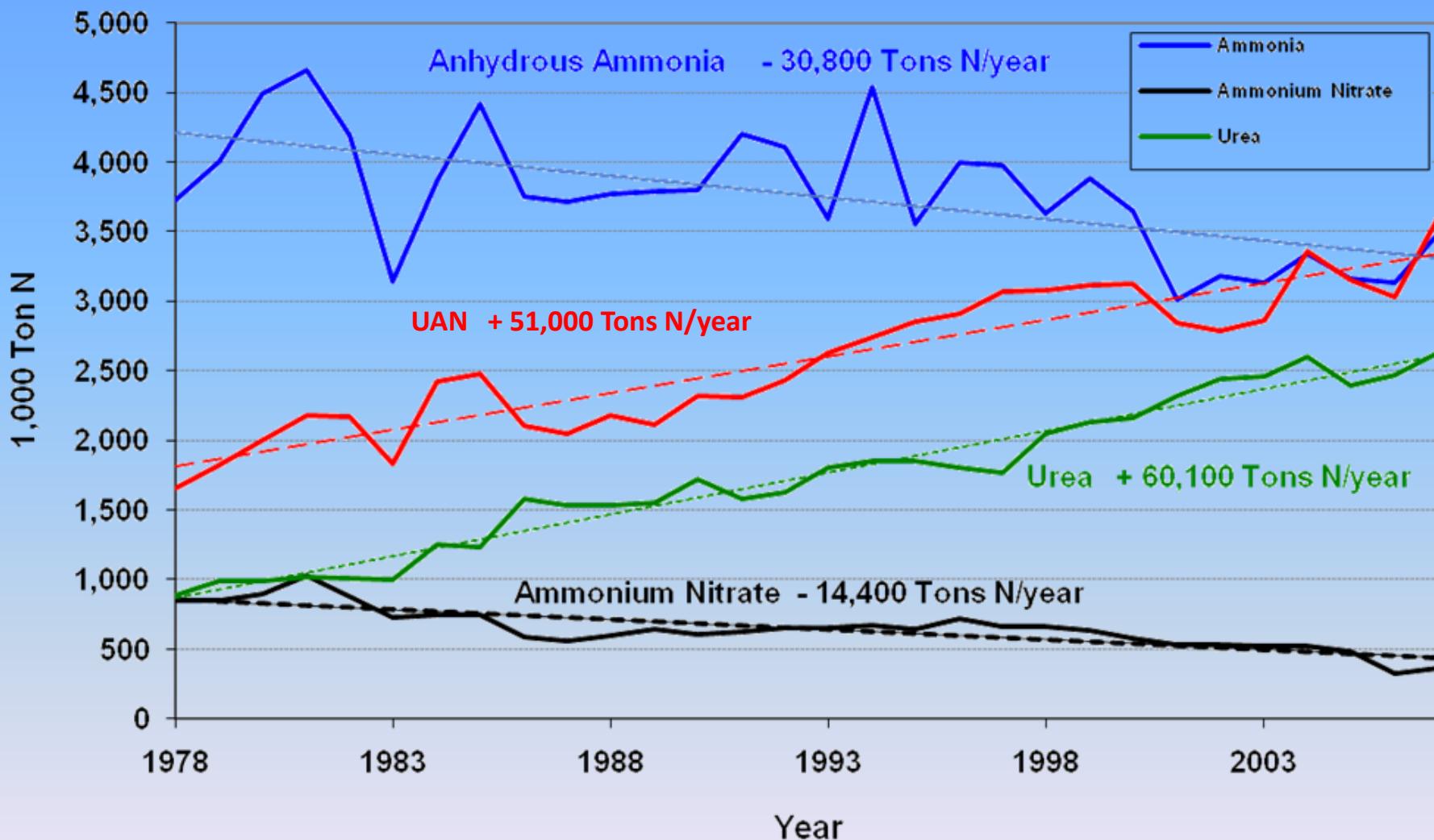
<http://www.drought.unl.edu/dm/monitor.html>

National Drought Mitigation Center

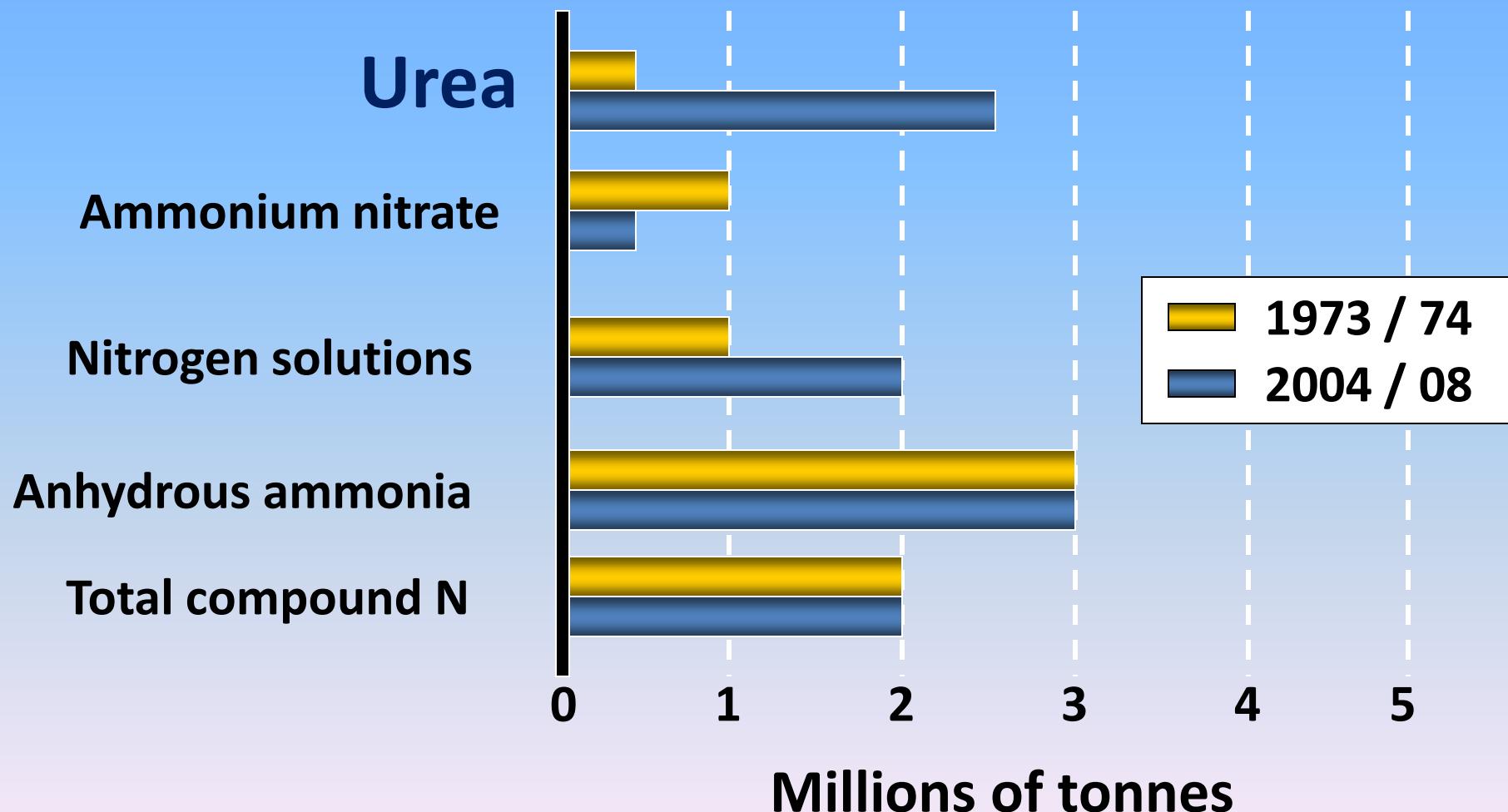
DEPARTMENT OF THE INTERIOR

NOAA
DEPARTMENT OF COMMERCE

Released Thursday, December 4, 2008


FORECAST

DATE


- Improving crop nutrient demand drivers and outlook
 - Upturn in the global economic outlook
 - Constructive agricultural fundamentals
- Tighter phosphate fundamentals begins to take hold
 - Low stocks from producer warehouses to farm field
 - Demand recovery underway
- Potash shipments remain slow
 - Waiting for a China settlement and price discovery
 - Strong demand recovery expected in 2018
 - Demand recovery at what price?
- Unpredictable factors to watch
 - Agricultural commodity prices and farm economics
 - Macroeconomic conditions
 - Government policies

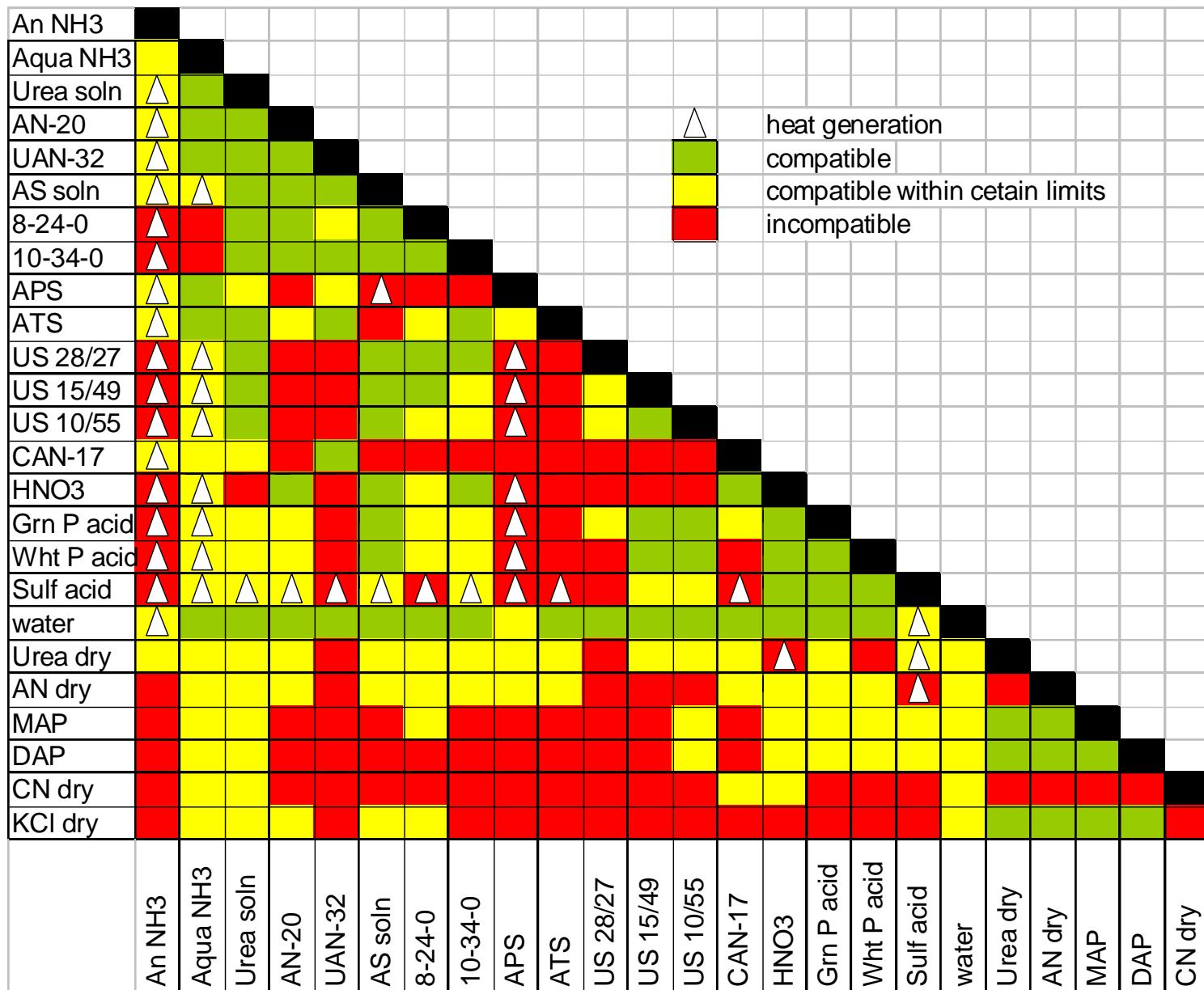
U.S. Nitrogen Fertilizer Consumption

Tons N/year

USA Evolution of N Fertilizer Consumption

Nutrient Demand of a 225 bu/a Corn Crop and Nutrient Supply from the Soil

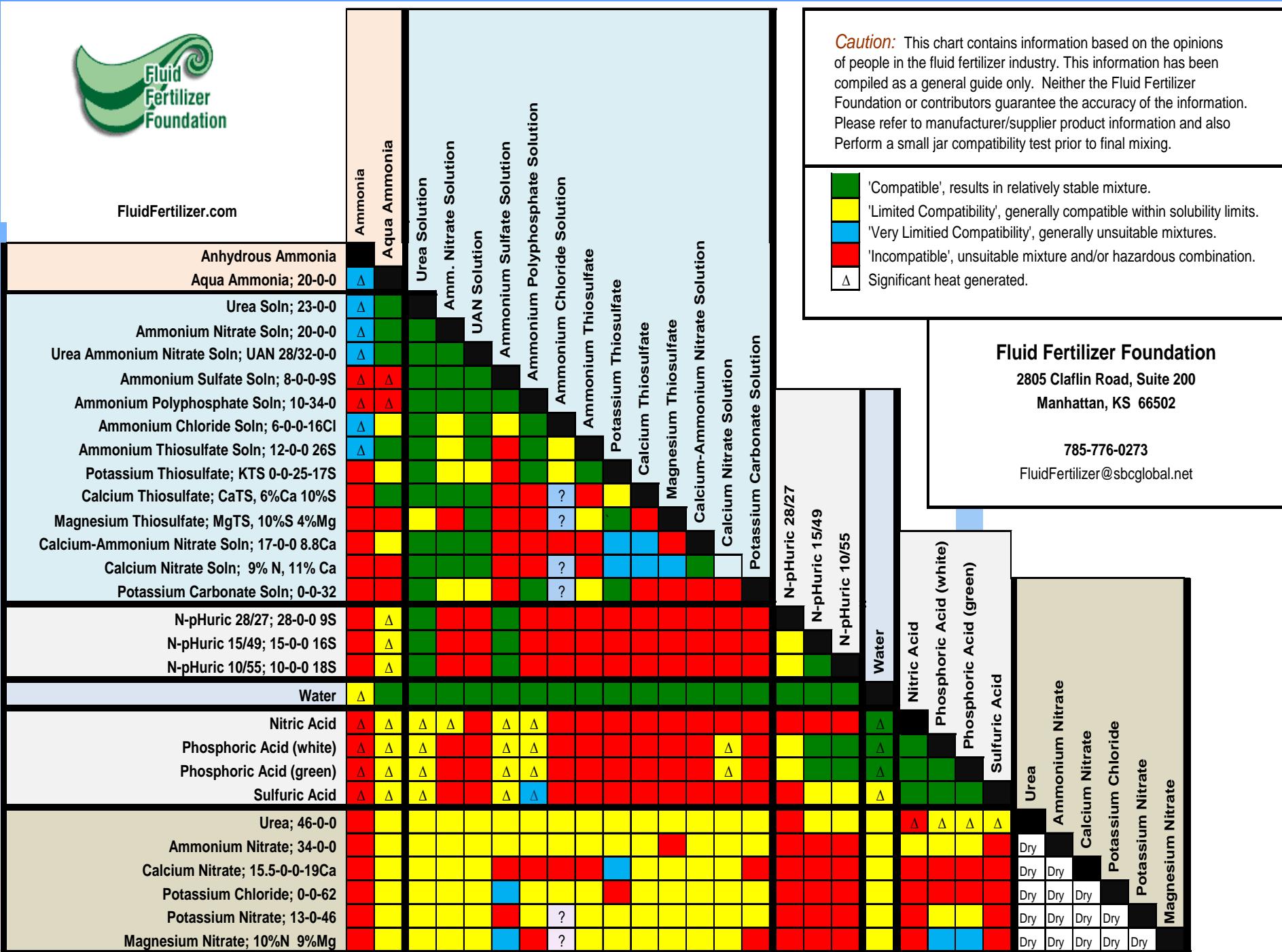
Nutrient	Estimates on Amounts (lb/a) Supplied by Barney			
	Demand (lb/a)	Interception	Mass Flow	Diffusion
Potassium	250	6	34	210
Nitrogen	254	3	206	45
Phosphorus	60	2	3	55
Sulfur	30	2	28	0


As a rule, elements as you move upper left are more soluble with elements as you move upper right

hydro gen																helium	
H		IIA														He	
1.00794																4.002602	
3	4															10	
li thium	beryl li um															ne on	
Li	Be															20.179	
6.941*	9.01218																
11	12															18	
so di um	magn esium															ar go n	
Na	Mg															39.948	
22.9898	24.305	IIIB	IVB	VB	VI B	VIIB		VIIIB		B	IB						
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
po tassium	cal ci um	sc andium	ti tanium	va nadium	chro mium	ma ngane se	iron	co balt	nick el	cop per	zin c	ga li um	ge rmanium	ar se nic	se le ni um	bro mine	kry pto n
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
39.0983	40.078	44.9559	47.88--	50.9415	51.9961	54.938	55.847	58.9332	58.69	63.546	65.39*	69.723	72.59	74.9216	78.96	79.904	83.8
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
ru bidi um	str ongi um	yttr ium	zirco ni um	niob ium	mo lybde num	te chne tum	ru the ni um	rhodi um	pa ladi um	si lver	ca dmium	in di um	ti n	anti mo ny	te li urium	io di ne	xe no n
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
85.4678*	87.62	88.9059	91.224*	92.9064	95.94	(98)	101.07	102.906	106.42	107.868	112.41	114.82	118.71	121.75	127.6	126.905	131.29
55	56	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
ce si um	ba ri um	lan thanum	ha fne um	ta ta um	tu nge n	re the ni um	os mi um	ri di um	pla ti nium	go ld	me rcury	th al li um	le ad	bi smuth	po bni um	asta tine	ra do n
Cs	Ba	La**	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Tl	Pb	Bi	Po	At	Rn
132.905	137.33	138.906	178.49	180.948	183.85	186.207	190.2	192.22	195.08	196.967	200.59	204.383	207.2	208.98	(209)	(210)	(222)
87	88	89	104	105	106	107	108	109	110	111	112		114				
fr an ci um	ra di um	acti ni um	ut he rfo ri um	du bni um	se abor gi um	bo ri um	ha si um	me ni um	da rms tadi um	un unu ni um	un unu bi um						
Fr	Ra	Ac**	Rf	Db	Sg	Bh	Hs	Mt	Ds	Uuu	Uub		Uuq				
(223)	226.025	227.028	(261)	(262.11)	(266.12)	(264.12)	(269.13)	(268.14)	(271)	(272.15)	(285)		(289)				
** Lanthanides																	
	58	59	60	61	62	63	64	65	66	67	68	69	70	71			
	ce ri um	pra seody ni um	ne ody ni um	pro me thi um	sa mar ium	eu ro pi um	ga do lni um	ter bi um	dy pros i um	ho lni um	er bi um	th uli um	ye ter bi um	lu te ti um			
	Ce	Pr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Ho	Er	Tm	Yb	Lu			
	140.12	140.908	144.24	(145)	150.36	151.96	157.25	158.9254	162.50	164.9304	167.26	168.9342	173.04	174.967			
** Actinides																	
	90	91	92	93	94	95	96	97	98	99	100	101	102	103			
	th o ri um	pro ta ci ni um	ura ni um	ne ptu ni um	pla tu ni um	ame ric i um	cur ium	ber kel ium	ca lifo mi um	e nste ni um	fer mi um	ne nde le vi um	no bel ium	la wren ci um			
	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Es	Fm	Md	No	Lr			
	232.0381	231.0359	238.0289	237.0482	(244)	(243)	(247)	(247)	(251)	(252)	(257)	(258)	(259)	(260)			

KEY

atomic number
Element name
Symbol
atomic weight


Unocal Compatibility Chart

FluidFertilizer.com

Caution: This chart contains information based on the opinions of people in the fluid fertilizer industry. This information has been compiled as a general guide only. Neither the Fluid Fertilizer Foundation or contributors guarantee the accuracy of the information. Please refer to manufacturer/supplier product information and also Perform a small jar compatibility test prior to final mixing.

 'Compatible', results in relatively stable mixture.

 'Limited Compatibility', generally compatible within solubility limits.

 'Very Limited Compatibility', generally unsuitable mixtures.

 'Incompatible', unsuitable mixture and/or hazardous combination.

 Significant heat generated.

Fluid Fertilizer Foundation

2805 Claflin Road, Suite 200

Manhattan, KS 66502

785-776-0273

FluidFertilizer@sbcglobal.net

Solutions for AGRICULTURE

FluidFertilizer.com

	Anhydrous Ammonia	Aqua Ammonia	Urea Solution	Ammonium Nitrate Solution	Ammonium Sulfate Solution	Ammonium Polyphosphate Solution	Ammonium Chloride Solution	Ammonium Thiosulfate	Potassium Thiosulfate	Calcium Thiosulfate	Magnesium Thiosulfate	Calcium-Ammonium Nitrate Solution	Calcium Nitrate Solution	Potassium Carbonate Solution	N-pHuric 28/27	N-pHuric 15/49	N-pHuric 10/55	Water	Nitric Acid	Phosphoric Acid (white)	Phosphoric Acid (g)	Sulfuric Acid	Urea	Ammonium Nitrate	Calcium Nitrate	Potassium Chloride	Potassium Nitrate	Magnesium Nitrate	Monopotassium Phosphate	PeKacid			
Anhydrous Ammonia ; 82-0-0			Δ																Δ														
Aqua Ammonia; 20-0-0																																	
Urea Solution; 23-0-0	Δ																																
Ammonium Nitrate Solution; 20-0-0	Δ																																
Urea Ammonium Nitrate Solution; UAN 28/32-0-0	Δ																																
Ammonium Sulfate Solution; 8-0-0-9S	Δ	Δ																															
Ammonium Polyphosphate Solution; 10-34-0	Δ	Δ																															
Ammonium Chloride Solution; 6-0-0-16Cl	Δ																																
Ammonium Thiosulfate Solution; ATS, 12-0-0-26S	Δ																																
Potassium Thiosulfate Solution; KTS, 0-0-25-17S																			?														
Calcium Thiosulfate; CaTS, 6%Ca 10%S																			?														
Magnesium Thiosulfate; MgTS, 10%S 4%Mg																			?														
Calcium-Ammonium Nitrate Solution; 17-0-0 8.8Ca																			?														
Calcium Nitrate Solution; 8-0-0-11Ca																			?														
Potassium Carbonate Solution; 0-0-32																			?														
N-pHuric 28/27; 28-0-0-9S		Δ																															
N-pHuric 15/49; 15-0-0-16S		Δ																															
N-pHuric 10/55; 10-0-0-18S		Δ																															
Water	Δ																																
Nitric Acid	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ			
Phosphoric Acid (white)	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ			
Phosphoric Acid (green)	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ			
Sulfuric Acid	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ	Δ			
Urea; 46-0-0																																	
Ammonium Nitrate; 34-0-0																																	
Calcium Nitrate; 15.5-0-0-19Ca																																	
Potassium Chloride; 0-0-62																																	
Potassium Nitrate; 13-0-46																			?														
Magnesium Nitrate; 10-0-0-9Mg																			?														
Monoammonium Phosphate (Technical, 12-61-0)																			?	?	?	?	?	?	?	?	?	?	?	?	?		
Monopotassium Phosphate (0-52-34)																			?	?	?	?	?	?	?	?	?	?	?	?	?		
PeKacid (0-60-20)																			?														

Caution: This chart contains information based on the opinions of people in the fluid fertilizer industry. This information has been compiled as a general guide only. Neither the Fluid Fertilizer Foundation or contributors guarantee the accuracy of the information. Please refer to manufacturer/supplier product information and also perform a small jar compatibility test prior to final mixing.

	'Compatible', results in generally acceptable mixture.
	'Limited Compatibility', generally compatible within solubility limits.
	'Very Limited Compatibility', generally unsuitable mixtures.
	'Incompatible', unsuitable mixture and/or hazardous combination.
	Significant heat generated.

Fluid Fertilizer Foundation

2805 Claflin Road, Suite 200
Manhattan, KS 66502

785-776-0273

FluidFertilizer@sbcglobal.net

Technical Grade MAP

PeKacid

Monopotassium Phosphate

“Any chemical reaction that
proceeds smoothly under normal
conditions can proceed violently in
the presence of an idiot!”

This usually is preceded by the
words:

“Hey Bubba watch this!”

CHEMICAL COMPATIBILITY FOR LIQUIDS FERTILIZERS

Table Key:

- A- Acceptable if compatible with container or appurtenances
- N- Not acceptable because of chemical compatibility
- 1- Acceptable if product is treated with corrosion inhibitor
- 2- Acceptable if warranted by equipment manufacturer for the intended use
- 3- Acceptable if cleaned after seasonal use and is used to store materials less than three months (cumulative) annually

Product	Urea Ammonia Nitrate	Ammonium Thiosulfate	Ammonium Poly- phosphate	Potassium Phosphate	Potassium Hydroxide	Potash Solutions	Mixed Fertilizers, Starters
Container Material							
Stainless Steel	A	A	A	A	A	A	A
Mild Steel	1	1	A	N	N	3	3
Mild Steel with Liner	2	2	A	2	2	2	2
Aluminum	A	A	N	N	N	N	N
Fiberglass	A	A	A	A	2	A	A
Poly or Plastic	A	A	A	A	2	A	A
Brass or Copper Alloys	N	N	N	N	N	N	N
Plugs, Valves, Tank Inserts							
Stainless Steel	A	A	A	A	A	A	A
Nickel Stainless Insert	A	A	A	A	2	A	A
Fully Lined Metal							
Stainless Insert	A	A	A	A	N	A	A
Nylon Ball Valve	A	A	A	A	A	A	A
Forged Steel	A	A	A	2	N	A	A
Cast Iron/Mild Steel	N	N	A	N	N	N	N
Poly or Plastic	A	A	A	A	2	A	A
Brass or Copper Alloys	N	N	N	N	N	N	N
Plumbing							
Stainless Steel	A	A	A	A	A	A	A
Forged Steel	A	A	A	2	N	A	A
Cast Iron/Mild Steel	1	1	A	N	N	3	3
Galvanized	N	N	A	N	N	N	3
PVC/Other Synthetics	2	2	2	A	2	2	2

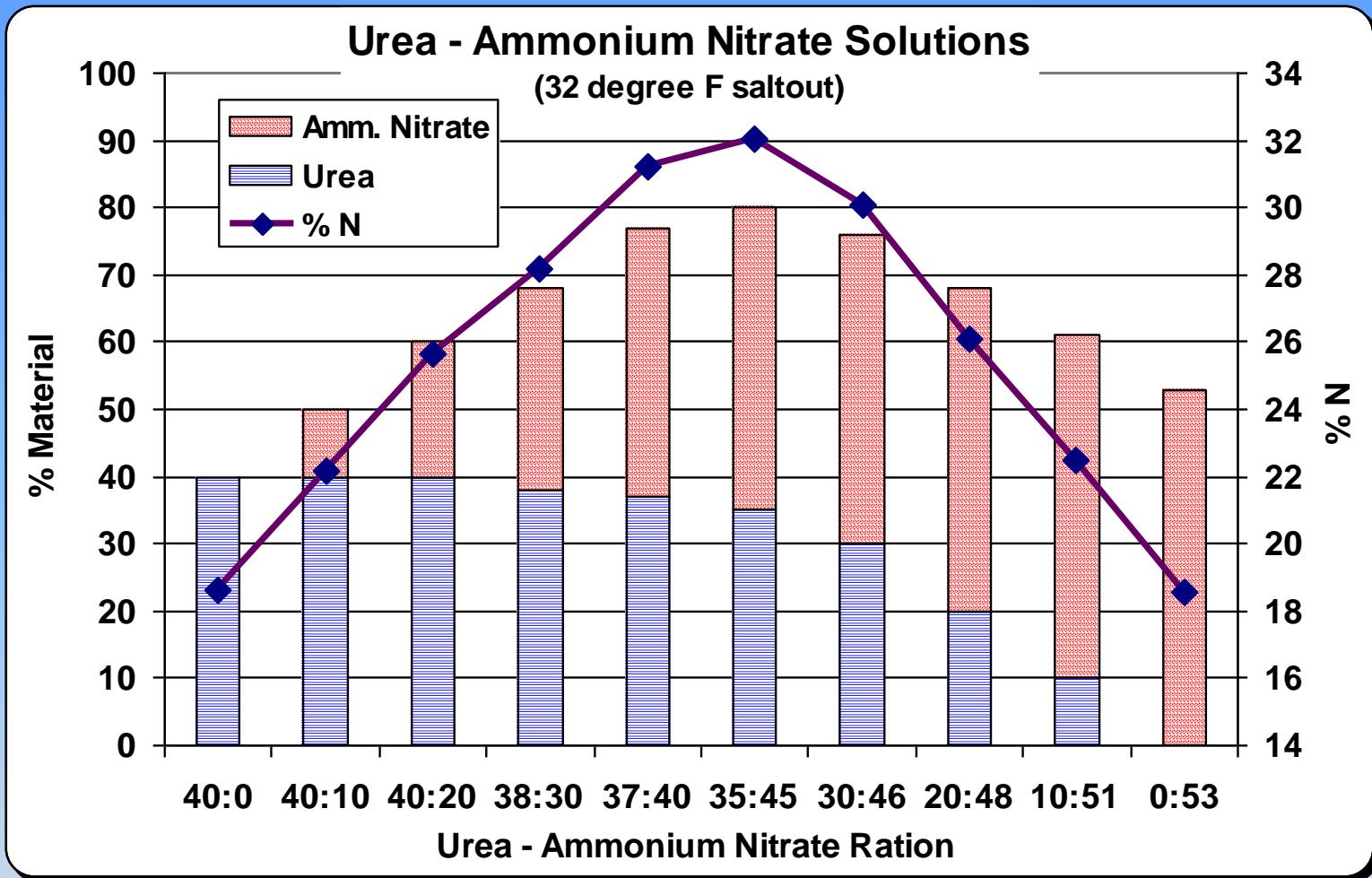
Source: Wisconsin Department of Agriculture, Trade and Consumer Protection

What is a BTU?

- A BTU, short for British Thermal Unit, is a basic measure of thermal (heat) energy. One BTU is the amount of energy needed to heat one pound of water one degree Fahrenheit, measured at its heaviest point. In other words, if you placed 16 ounces of water at 59°F into a stovetop pan and turned on the gas burner, it would take one BTU to raise the temperature of the water to 60°F.

UAN PRODUCTION

- AN Liquor + Urea Liquor
- Nitric acid + Ammonia + Urea Liquor
- Melt
- Adjust concentration

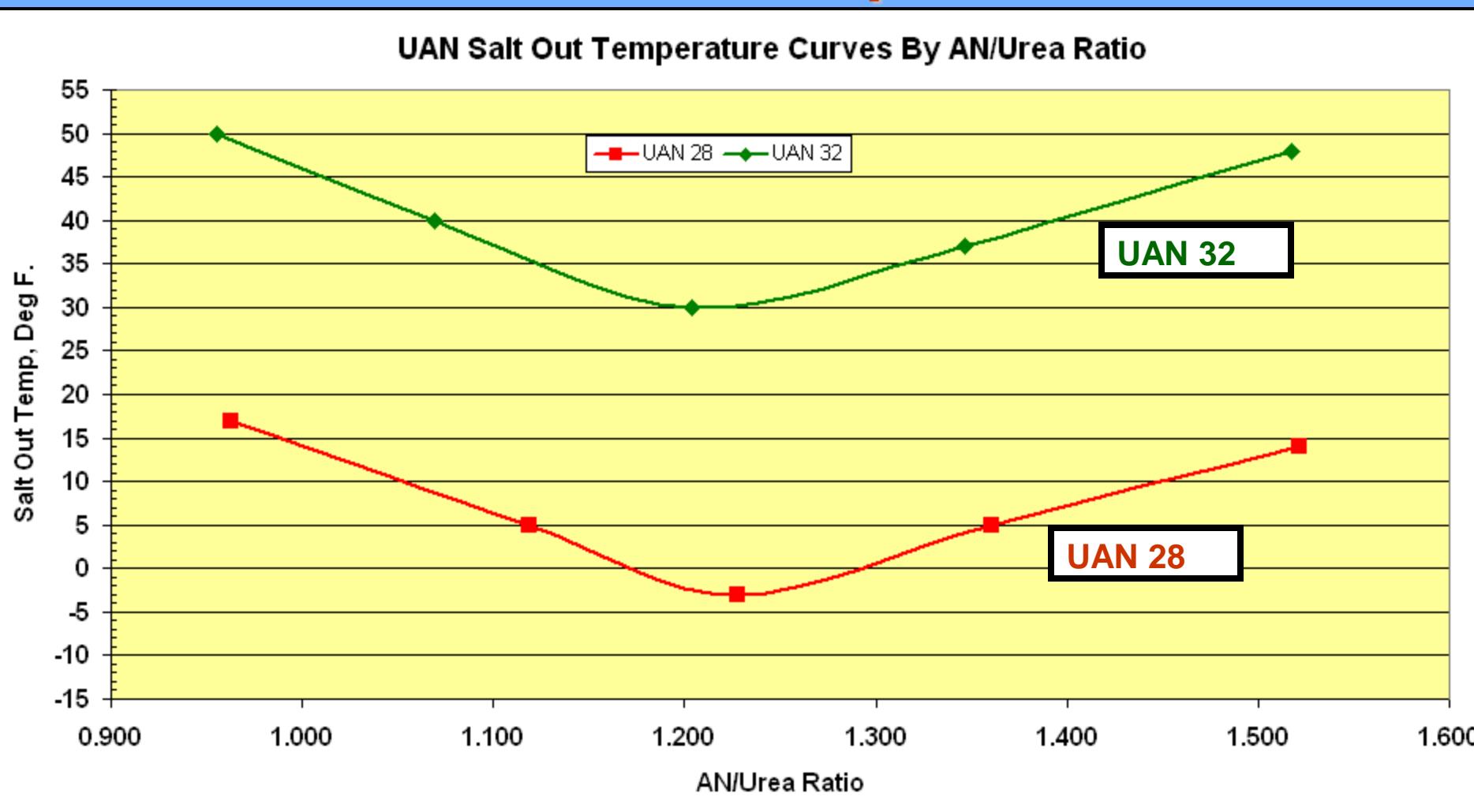

Composition of UAN 28% N

- 14 % N from Ammonium Nitrate
 - 7% ammonium N
 - 7% nitrate N
- 14% N from Urea
- 30% water
- + small amounts of inhibitors to inhibit corrosion of mild steel

ADJUST UAN

- Addition of Urea-summer, winter blend
- Addition of Ammonia to adjust pH
- Addition of one or the other also impacts salt out temperature
- Addition of water to cut concentration impacts salt out
- Inhibitor addition impacts salt out temperature

pH	% Free NH₃
0 - 6.30	0.00
6.31 - 6.85	0.01
6.86 - 7.10	0.02
7.11 - 7.25	0.03
7.26 - 7.35	0.04
7.36 - 7.45	0.05
7.46 - 7.52	0.06
7.53 - 7.57	0.07
7.58 - 7.61	0.08
7.62 - 7.67	0.09
7.68 - 7.72	0.10
7.73 - 7.75	0.11
7.76 - 7.80	0.12
7.81 - 7.83	0.13
7.84 - 7.86	0.14
7.87 - 7.88	0.15
OVER 7.88	TITRATE


Eutectic Point – point of maximum solubility

32% UAN contains:

- approximately 35% ammonium nitrate, 45% urea and 20% water at eutectic point

28% UAN contains 30% water

The Ratio of AN to Urea in UAN Determines the Salt Out Temperature

The ideal ratio range is 1.1 to 1.4

Lowering Water Freezing Temperature With UAN Solution

% N	Freezing Temperature ° F	28-0-0	32-0-0
		gal per 100 gal water	gal per 100 gal water
0	32	0	0
2	29	6.1	5.2
4	25	13.1	11.2
6	22	21.5	18.2
8	19	31.5	26.2
10	15	43.7	35.6
12	12	59.0	47.2
14	9	78.7	61.2

Appearance Value –Cross Contamination

- A Product Is Only As Good As The Skill It Was Made
- Contamination Can Be Disastrous To A Blend
- Dries That Go Into Blends Must Be Segregated
- Alley Ways Must Not Be Allowed To Co-Mingle

UAN Solution

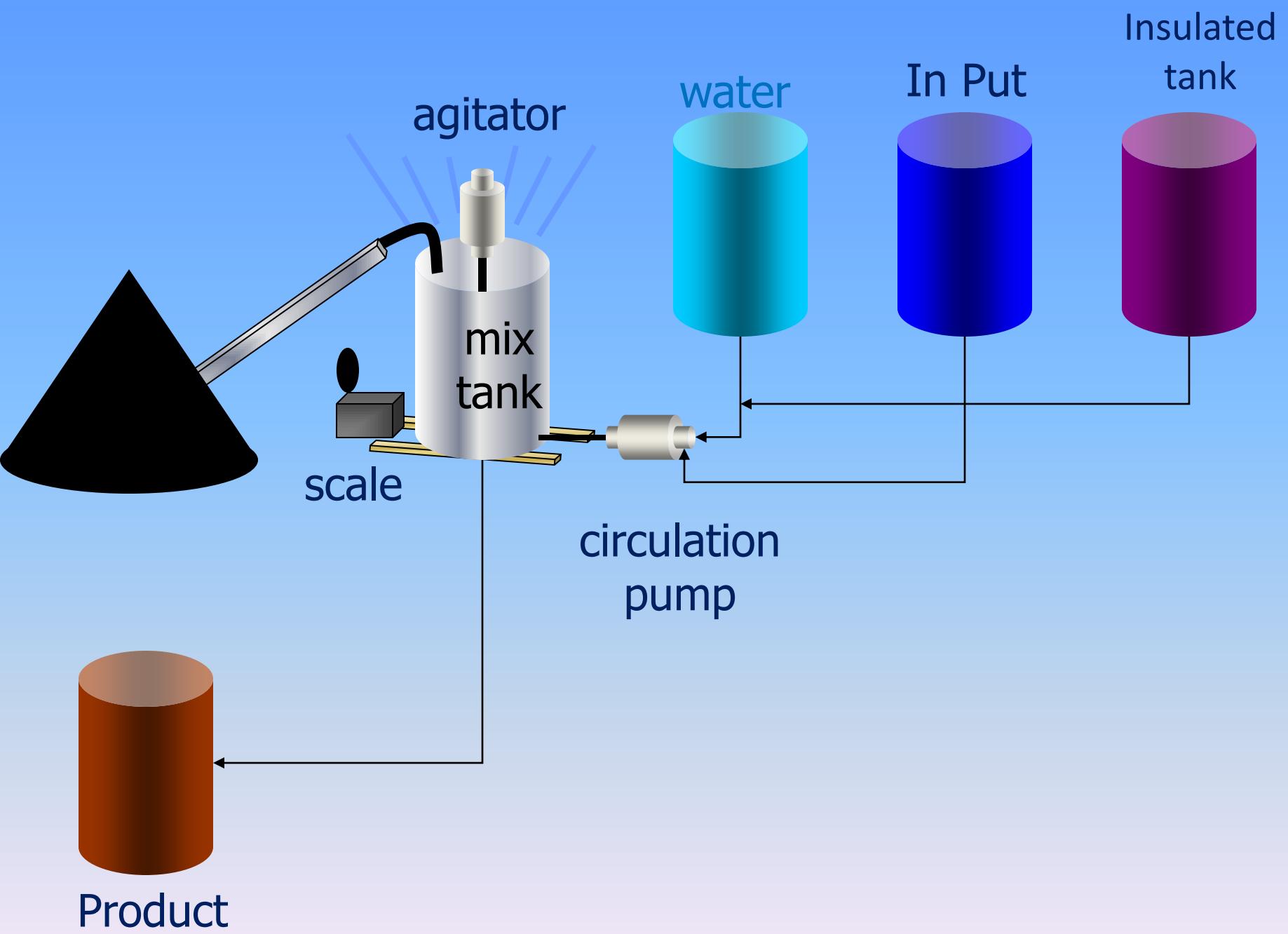
- Salt-out is an issue in many environments
 - Warm water has ability to dissolve more salts than cold water
 - Salt-out occurs when salt content exceeds solubility at a given product temperature
 - Crystals form on tank walls as temperature cools
 - Eventually salts accumulate at tank bottom
 - Salts will re-dissolve with sufficient heat and recirculation
 - There is very little water in UAN solution.

Do you Circulate Continuous?

Receiving and Unloading Materials Into the Plant

- HAVE ALL PERTINENT SHIPPING INFORMATION, BOLs, DOT requirement, etc.
- REVIEW AND UNDER STAND SDS AND RMP/PSM REQUIREMENTS
- HAZARDOUS MATERIALS RECEIVING

Filling Liquid Storage Tanks


- Make Sure Inbound Transport Is Connected to the Correct Storage Tank
- Open All Appropriate Valves and Close Others
- Contain All Leaks
- Check Tank Inventory Prior To Transfer
- Wear Proper PPE
- Close All Appropriate Valves Upon Completion Of Transfer
- Complete All Documentation and Record Ending Inventory

BLENDING LIQUID FERTILIZERS

- Solubility
- Order of Addition
- Stability

CHANGING NITROGEN SUPPLY

- Ammonium nitrate
- Increased importation of UAN
- pH variation in UAN
- AN/Urea ratio
- Supply
- Discoloration

Source and Quality of Water

- Major concern is Water Quality
- pH and Bicarbonates (HCO_3^-)
- Treat water with acid bring to pH 6.5
- Electrical Conductivity (EC)
- Snow melt and rain fed lake water
- Need gypsum if EC is $< 0.3 \text{ dS/m}$
- Or EC is $< 0.3 \text{ mmhos/cm}$

WATER
5

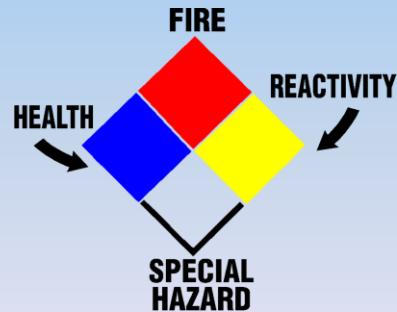
Order of Addition

- Water (Hot / Cold)
- Chelating /Complexing Agent
- Nitrogen
- Phosphates
- pH adjustment (initial)
- Micronutrients for Chelating/Complexing
- Potash
- Additional Micronutrients
- Calcium Nitrate / Chloride
- ATS / Pot Carbonate / SRN's
- Final pH Adjustment

Order of Addition

- Suspend Solids While Mixing
- Chelating / Complexing
- pH
- Temperature
- Reaction / Compatibilities
- Foaming / Air Entrapment

Many exceptions to Rules of Addition

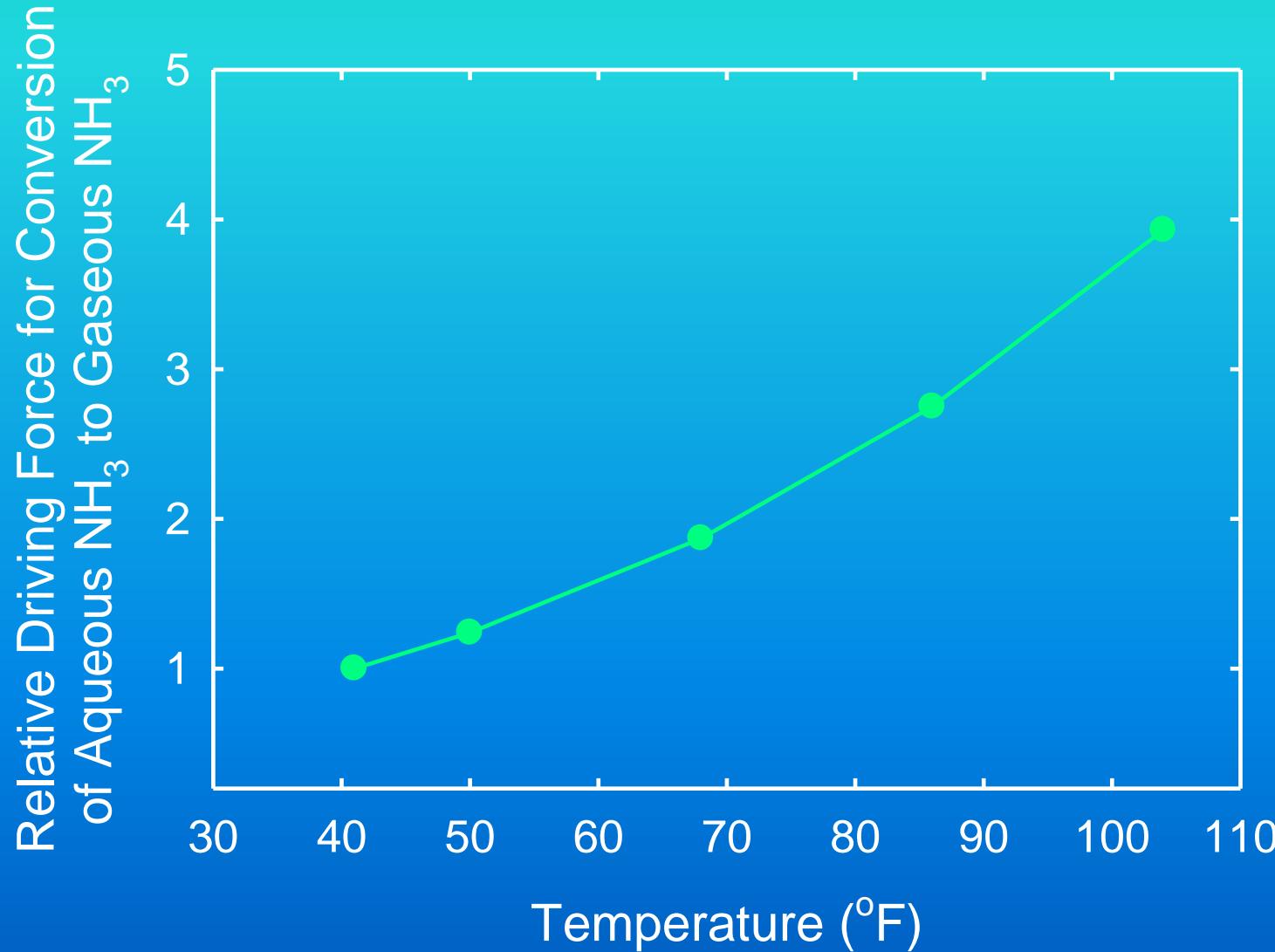


LABELING

- Use Placards, NFPA, and Caution Labels & Symbols
- Label All Containers Properly
Avoid trade symbols: KOH, MOP, APP

CHEMICAL NAME	
<input type="radio"/>	HEALTH
<input type="radio"/>	FLAMMABILITY
<input type="radio"/>	REACTIVITY
<input type="radio"/>	PROTECTIVE EQUIPMENT
HAZARD RATING	
4 EXTREME	1 SLIGHT
3 SERIOUS	0 MINIMAL
2 MODERATE	
0 MINIMAL	

4 EXTREME
3 SERIOUS
2 MODERATE
1 SLIGHT
0 MINIMAL



10.0

Summary of ammonia loss from UAN???

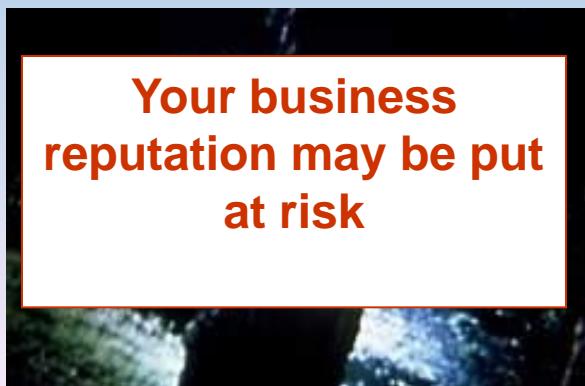
- Urea in UAN does not hydrolyze in the fertilizer tank.
- The NH_4^+ from the ammonium nitrate portion of the UAN cannot be lost as NH_3 .
- The amount of NH_3 added to some UAN to inhibit corrosion is very small, around 10 lb per ton. A small portion of this NH_3 may be lost during application.

Effect of Temperature on Conversion of Aqueous NH_3 to Gaseous NH_3

18:11

So Why Do Tanks Fail?

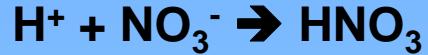
- Improper Construction
- Corrosion
- Specific Gravity of fluid incompatible with tank wall
- Internal/External forces or events (fire, flood, impact, etc.)
- Age/UV related issues – Poly & Fiberglass
- Seismic zone design not compatible with area



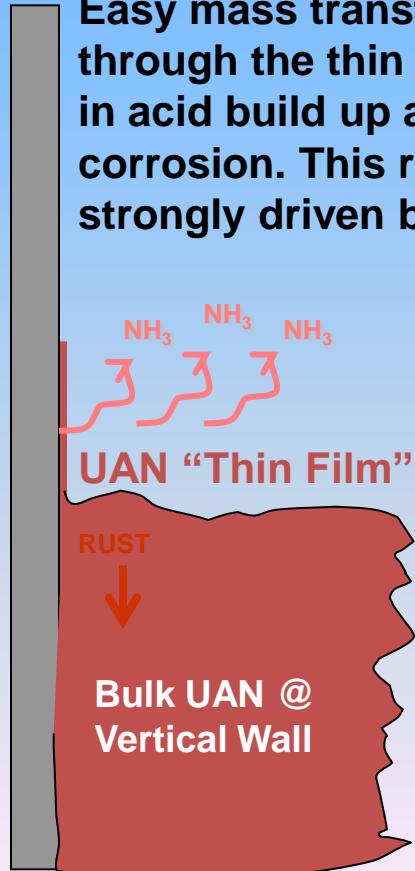
UAN Corrosion Management Should Be Taken Seriously by Every UAN Tank Owner

- All UAN producers strive to make quality material, that is clean, bright and only minimally corrosive
- However, you should not depend solely on the UAN producer to manage your corrosion concerns.
- Some producers have gone to lined tanks, or use epoxy coatings extensively. Their piping is all stainless.
- UAN corrosiveness can vary:
 - producer to producer,
 - plant to plant,
 - and even day to day in the same plant

If a UAN tank located on your property leaks, you may be liable for contamination in ground and surface water...



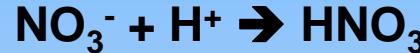
weld erosion at tub ring
vert


repair weld on chine

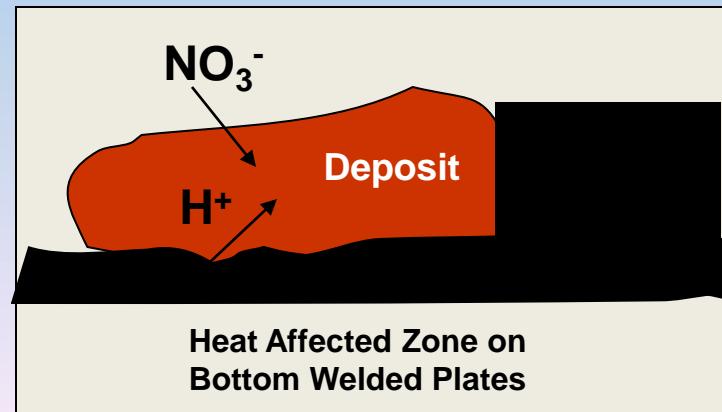
Key UAN Corrosion Mechanisms

Surface Corrosion in UAN

Easy mass transfer of ammonia through the thin UAN film results in acid build up and surface corrosion. This reaction is strongly driven by temperature



Pitting Corrosion in UAN


Crevice or Under-Deposit Corrosion

Solution

The H⁺ can't diffuse out of the crevice fast enough. To remain electrically neutral, NO₃⁻ ions come in and in effect make Nitric Acid resulting in low pH inside the crevice, resulting in accelerated (pitting) corrosion.

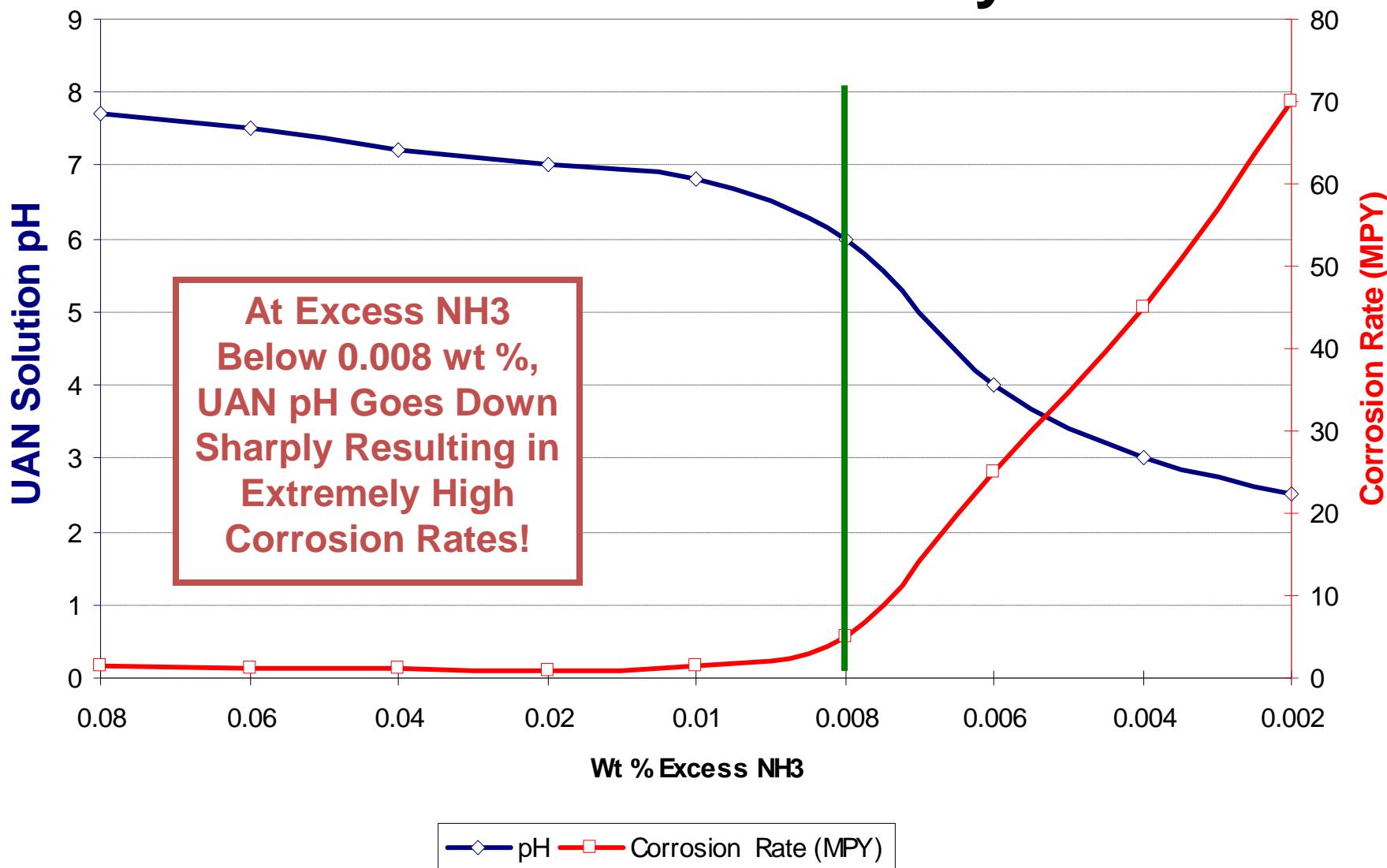
Tank Failure Background & History

- Storage tank failure is not a new phenomenon in fact...

On January 15, 1919 a United States Industrial Alcohol Company's distilling tank which recently had received a shipment of molasses in from Puerto Rico, exploded. At about 12:40 p.m. the giant tank ruptured, emptying its entire contents of about 2.5 million gallons of molasses, into Commercial Street in the space of a few seconds. The tank, a 90'-0 diameter x 50-foot high cast iron tank was filled to the top with molasses. Upon failure, a 15-foot high wave of dark molasses moving about 35 miles per hour swallowed the streets of Boston's North End. Almost 150 people lie injured in the streets with the final death toll being 21. A Massachusetts court determined that insufficient safety inspections had played a part in the accident. In time, after 3,000 witnesses testify during 300 days of hearings, the courts found the company liable, concluding shoddy construction and overfilling of the tank was to blame, along with the apparent sudden expansion of the molasses -- the temperature had only been 2 degrees above zero the previous day. The company paid almost \$1 million to settle the claims.

Tank Failure Background & History (Cont.)

- 3/1997 – Washington, a 500k gallon storage tank of Potassium Thiosulfate has a weld rupture resulting in loss of 100k gallons of material.
- 3/1997 – Iowa, a 1M gallon ammonium phosphate tank ruptures and in turn damages two other liquid fertilizer tanks
- 7/1999 – Michigan, a 1M gallon APP ruptures and damages 3 adjacent tanks
- 1/2000 – Ohio, a 1M gallon fertilizer tank ruptures and damages 4 adjacent tanks and 5 tractor trailer rigs. More than 800k gallons spills into the Ohio River.
- 3/2000 – Ohio, a 1.5M gallon ammonium phosphate tank ruptures and damages 2 adjacent tanks. Some of the released liquid flows into nearby creeks.
- 10/2000 – Montana, a 2M gallon nitrogen fertilizer intermediate tank has a massive roof failure, no loss of product, but tank is damaged significantly.


UAN Corrosion Management Should Be Taken Seriously by Every UAN Tank Owner

- Purchasing UAN from multiple sites, may result in mixed inhibitors
 - These different inhibitors, (now diluted), may not be as effective together as they are by themselves when at full strength
- Purchasing quality UAN, from a trusted source, may be worth a little extra in price
 - You should monitor what you receive
 - Look closely at the quality of the UAN you are buying and the assets that will be exposed to that UAN

10.0

Excess NH₃ Controls the pH and also the Corrosivity

Considerations


- Systematic approach
- Compatible components
- Short term vs. long term
- Plan ahead for future expansion

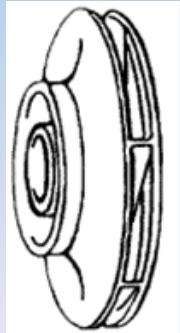
Floor Failure Prevention

- Concrete Foundations
- Internal Coatings
- Full draining of liquids/thorough circulation of liquids
- Routine solids removal
- Cathodic protection

HOUSEKEEPING

- Keep the Place Clean
- Plumbing
- Pumps
- Gaskets
- Etc.

Open vs. closed impeller design pumps


Open

The fluid enters the eye of the impeller where the turning vanes add energy to the fluid and direct it to the discharge nozzle. A close clearance between the vanes and the pump volute, or back plate in a few designs, prevents most of the fluid from recirculating back to the eye of the impeller.

(L) shows the leading edge or higher-pressure side of the impeller. (T) describes the trailing edge of the impeller

Closed

The fluid enters the eye of the impeller where the vanes add energy to the fluid and direct it to the discharge nozzle. There is no impeller to volute or back plate clearance to set.

Wear rings restrict the amount of discharge fluid that recirculates back to the suction side of the impeller. When this wear ring clearance becomes excessive the wear rings must be replaced.

**FRICITION LOSS OF WATER IN FEET PER 100 FEET LENGTH OF PIPE, BASED ON WILLIAMS & HAZEN
FORMULA USING CONSTANT 100. SIZES OF STANDARD PIPE IN INCHES**

U.S. Gals. per min.	1/2" Pipe		3/4" Pipe		1" Pipe		1 1/4" Pipe		1 1/2" Pipe		2" Pipe		2 1/4" Pipe		3" Pipe		4" Pipe		5" Pipe		6" Pipe											
	Vel. ft. per Sec.	Loss in Feet	Vel. ft. per Sec.	I I	Vel. ft. per Sec.	Loss in Feet																										
2	2.10	7.4	1.20	1.9	1.49	2.14	.86	.57	.63	.26	1.29	1.20	.94	.56	.61	.20	1.02	.50	.65	.17	.45	.07	1.20	1.9								
4	4.21	27.0	2.41	7.0	1.49	2.14	.86	.57	.63	.26	1.29	1.20	.94	.56	.61	.20	1.02	.50	.65	.17	.45	.07	1.20	1.9								
6	6.31	57.0	3.61	14.7	2.23	4.55	1.29	1.20	.94	.56	.61	.20	1.29	1.20	.94	.56	.61	.20	1.02	.50	.65	.17	.45	.07	1.20	1.9						
8	8.42	98.0	4.81	25.0	2.98	7.8	1.72	2.03	1.26	.95	.82	.33	.52	.11	.45	.07	1.02	.50	.65	.17	.45	.07	1.20	1.9								
10	10.52	147.0	6.02	38.0	3.72	11.7	2.14	3.05	1.57	1.43	1.02	.50	.65	.17	.45	.07	1.02	.50	.65	.17	.45	.07	1.20	1.9								
12			7.22	53.0	4.46	16.4	2.57	4.3	1.89	2.01	1.23	.79	.78	.23	.54	.10																
15			9.02	80.0	5.60	25.0	3.21	6.5	2.36	3.00	1.53	1.08	.98	.36	.68	.15																
18			10.84	108.2	6.69	35.0	3.86	9.1	2.83	4.24	1.84	1.49	1.18	.50	.82	.21																
20			12.03	136.0	7.44	42.0	4.29	11.1	3.15	5.20	2.04	1.82	1.31	.61	.91	.25	.51	.06														
25					9.30	64.0	5.36	16.6	3.80	7.30	2.55	2.73	1.63	.92	1.13	.38	.64	.09														
30						11.15	89.0	6.43	23.0	4.72	11.0	3.06	3.84	1.96	1.29	1.36	.54	.77	.13	.49	.04											
35							13.02	119.0	7.51	31.2	5.51	14.7	3.57	5.10	2.29	1.72	1.59	.71	.89	.17	.57	.06										
40							14.88	152.0	8.58	40.0	6.30	18.8	4.08	6.6	2.61	2.20	1.82	.91	1.02	.22	.65	.08										
45									9.65	50.0	7.08	23.2	4.60	8.2	2.94	2.80	2.04	1.15	1.15	.28	.73	.09										
50									10.72	60.0	7.87	28.4	5.11	9.9	3.27	3.32	2.27	1.38	1.28	.34	.82	.11	.57									
55									11.78	72.0	8.66	34.0	5.62	11.8	3.59	4.01	2.45	1.58	1.41	.41	.90	.14	.62									
60									12.87	85.0	9.44	39.6	6.13	13.9	3.92	4.65	2.72	1.92	1.53	.47	.98	.16	.68									
65									13.92	99.7	10.23	45.9	6.64	16.1	4.24	5.4	2.89	2.16	1.66	.53	1.06	.19	.74									
70									15.01	113.0	11.02	53.0	7.15	18.4	4.58	6.2	3.18	2.57	1.79	.63	1.14	.21	.79									
75									16.06	129.0	11.80	60.0	7.66	20.9	4.91	7.1	3.33	3.00	1.91	.73	1.22	.24	.85									
80									17.16	145.0	12.59	68.0	8.17	23.7	5.23	7.9	3.63	3.28	2.04	.81	1.31	.27	.91									
85									18.21	163.8	13.38	75.0	8.68	26.5	5.56	8.1	3.78	3.54	2.17	.91	1.39	.31	.96									
90									19.30	180.0	14.71	84.0	9.19	29.4	5.88	9.8	4.09	4.08	2.30	1.00	1.47	.34	1.02									
95									14.95	93.0	9.70	32.6	6.21	10.8	4.22	4.33	2.42	1.12	1.55	.38	1.08											
100											15.74	102.0	10.21	35.8	6.54	12.0	4.54	4.96	2.55	1.22	1.63	.41	1.13									
110											17.31	122.0	11.23	42.9	7.18	14.5	5.00	6.0	2.81	1.46	1.79	.49	1.25									
120											18.89	143.0	12.25	50.0	7.84	16.8	5.45	7.0	3.06	1.17	1.96	.58	1.36									
130											20.46	166.0	13.28	58.0	8.48	18.7	5.91	8.1	3.31	1.97	2.12	.67	1.47									
140											22.04	190.0	14.30	67.0	9.15	22.3	6.35	9.2	3.57	2.28	2.29	.76	1.59									
150												15.32	76.0	9.81	25.5	6.82	10.5	3.82	2.62	2.45	.88	1.70										
160												16.34	86.0	10.46	29.0	7.26	11.8	4.08	2.91	2.61	.98	1.82										
170												17.36	96.0	11.11	34.1	7.71	13.3	4.53	3.26	2.77	1.08	1.92										
180												18.38	107.0	11.76	35.7	8.17	14.0	4.60	3.61	2.94	1.22	2.04										
190												19.40	118.0	12.42	39.6	8.63	15.5	4.84	4.01	3.10	1.35	2.16										
200												20.42	129.0	13.07	43.1	9.08	17.8	5.11	4.4	3.27	1.48	2.27										
220												22.47	154.0	14.38	52.0	9.99	21.3	5.62	5.2	3.59	1.77	2.50										
240												24.51	182.0	15.69	61.0	10.89	25.1	6.13	6.2	3.92	2.08	2.72										
260												26.55	211.0	16.99	70.0	11.80	29.1	6.64	7.2	4.25	2.41	2.95										
280													18.30	81.0	12.71	33.4	7.15	8.2	4.58	2.77	3.18											
300													19.61	92.0	13.62	38.0	7.66	9.3	4.90	3.14	3.40											
320													20.92	103.0	14.52	42.8	8.17	10.5	5.23	3.54	3.64											
340													22.22	116.0	15.43	47.9	8.68	11.7	5.54	3.97	3.84											
360														23.53	128.0	16.34	53.0	9.19	13.1	5.87	4.41	4.08										
380														24.84	142.0	17.25	59.0	9.69	14.0	6.19	4.86	4.31										
400														26.14	156.0	18.16	65.0	10.21	16.0	6.54	5.4	4.55										
450															20.40	78.0	11.49	19.8	7.35	6.7	5.11											
500																22.70	98.0	12.77	24.0	8.17	8.1	5.68										
550																	24.96	117.0	14.04	28.7	8.99	9.6	6.25									
600																		27.23	137.0	15.32	33.7	9.80	11.3	6.81								
650																			16.59	39.0	10.62	13.2	7.38									
700																			17.87	44.9	11.44	15.1	7.95									
750																			19.15	51.0	12.26	17.2	8.50									
800																			20.42	57.0	13.07	19.4	9.08									
850																			21.70	64.0	13.89	21.7	9.65									
900																			22.98	71.0	14.71	24.0	10.20									

• Doubling the diameter of a pipe increases its capacity four times

SAFETY

Special Situations

- Respirators
- Confined Space Entry
- Forklifts/Loaders/Shuttle Trucks
- Elevated Work / Maintenance
 - Harnesses
 - Safety Cages
 - Rest Platforms
 - Ladders & Man Lifts/Boom Trucks

SAFETY

- Our Most Important Priority
- Every Employee Goes Home Safe
 - Training – Documented
 - PPE when you can't eliminate hazards
 - Regular Tailgate & Huddles Meetings
 - Policies, Procedures, Work Directions
 - Develop Culture of Safety in
 - Environmental Safety
 - Facility / Equipment Safety

Training

- Haz-ops Trained. What Level?
- PPE
- Safety Meetings/Documentation
- Understanding Of the Process
- Response To Releases, etc.
- Understanding Of Chemistry

PERSONNEL RESPONSIBILITIES

- Safety And Quality Are Everyone's Business
- Be Properly Trained
- Understand All Products
- Chemistry (basic understanding)

SECURITY

- Site & Transportation Security
 - Homeland Security Compliance
 - Hazmat Railcar Training
 - Security Fencing
 - Restricted Entry

Supervision

- If You Are Not Committed To Training
- If You Are Not Committed To Proper Equipment
- If You Are Not Committed To Safety
- Don't Make These Products And Have Someone Toll Them For You

Key Take Aways...

- Training and Safety is Paramount
- Take Pride in Your Operation
- Quality Inputs make Quality Products
- Stored Liquid Can be Corrosive
- But **YOU** can manage this risk:
 - Manage Risk
 - Control Your UAN chemistry
 - Proper Tank Design and Maintenance Practices

Questions?