

# Comparison of ATS placement methods to enhance yield of continuous corn



**Daniel Kaiser**  
Associate Professor  
**Jeffrey Vetsch**  
Assistant Scientist

**U of M Twin Cities**  
612-624-3482  
[dekaiser@umn.edu](mailto:dekaiser@umn.edu)

**2017**  
**Fluid Forum**



**Soil Fertility**



UNIVERSITY OF MINNESOTA | EXTENSION  
Driven to Discover<sup>SM</sup>

# Sulfur in Minnesota

- Increased prevalence of deficiencies in corn
  - More common for soils with limited S supply (organic matter content <3.0% 0-6")
- Increases in corn grain yield with as little as 10 lbs of sulfate-S broadcast
- Producers are still concerned about fall application of sulfate-S on Med-Fine textured soils
- Some producers considering application of sulfur with the planter



# Net Return over the Rotation

| Nutrient   | Rate  | Red Wing          |       |       |       | Rochester |        |       |       |
|------------|-------|-------------------|-------|-------|-------|-----------|--------|-------|-------|
|            |       | 2 yr              | 4 yr  | 6 yr  | Total | 2 yr      | 4 yr   | 6 yr  | Total |
|            | lb/ac | -----\$/acre----- |       |       |       |           |        |       |       |
| Phosphorus | 120   | 0.0               | -48.0 | 80.0  | 32    | -48.0     | -96.0  | -8.0  | -152  |
| Potassium  | 100   | -4.0              | 31.0  | 96.0  | 123   | -40.0     | -50.0  | 4.0   | -86   |
|            | 200   | -44.0             | 47.0  | 56.0  | 59    | -80.0     | -60.0  | -11.0 | -151  |
|            | 300   | -84.0             | 30.0  | 16.0  | -38   | -120.0    | -100.0 | -51.0 | -271  |
| Sulfur     | 25    | 15.5              | 148.0 | 180.5 | 344   | -12.5     | 59.0   | 73.0  | 119.5 |

- P rates are in lb P<sub>2</sub>O<sub>5</sub>/ac - 0.40/lb
- K rates are in lb K<sub>2</sub>O/ac – \$0.40/lb
- S - \$0.50/lb Corn \$4/bu Beans \$10/bu
- Applied P and K rate may not be the “optimum rate” for each site
- Application cost is not factored into net return



**Soil Fertility**



UNIVERSITY OF MINNESOTA | EXTENSION  
Driven to Discover<sup>SM</sup>

# Net Return over the Rotation

| Nutrient   | Rate  | Becker            |        |        |       | Lamberton |       |        |       |
|------------|-------|-------------------|--------|--------|-------|-----------|-------|--------|-------|
|            |       | 2 yr              | 4 yr   | 6 yr** | Total | 2 yr      | 4 yr  | 6 yr** | Total |
|            | lb/ac | -----\$/acre----- |        |        |       |           |       |        |       |
| Phosphorus | 120   | -16.0             | 58.0   | 108    | 150   | -48.0     | 58.0  | 40.0   | 50    |
| Potassium  | 100   | -84.0             | -40.0  | -40.0  | -164  | -40.0     | 40.0  | 4.0    | 4     |
|            | 200   | -144.0            | -80.0  | -80.0  | -304  | -80.0     | 0.0   | -36.0  | -116  |
|            | 300   | -204.0            | -120.0 | -120.0 | -464  | -120.0    | -40.0 | -76.0  | -236  |
| Sulfur     | 25    | -12.5             | -12.5  | -12.5  | -37.5 | 15.5      | -12.5 | -12.5  | -9.5  |

- P rates are in lb P<sub>2</sub>O<sub>5</sub>/ac - 0.40/lb
- K rates are in lb K<sub>2</sub>O/ac – \$0.40/lb
- S - \$0.50/lb Corn \$4/bu Beans \$10/bu
- Applied P and K rate may not be the “optimum rate” for each site
- Application cost is not factored into net return

\*\*only 2016 corn data included



**Soil Fertility**



UNIVERSITY OF MINNESOTA | EXTENSION  
Driven to Discover™

# PKS Study Locations

|               | Year |     | Bray P1-P |     |     | NH <sub>4</sub> OAC-K |      |      | SOM |
|---------------|------|-----|-----------|-----|-----|-----------------------|------|------|-----|
| Location      | Est. |     | YR 1      | YR3 | YR5 | YR 1                  | YR 3 | YR 5 |     |
| -----ppm----- |      |     |           |     |     |                       |      |      |     |
| Red Wing      | 2011 | SiL | 34        | 29  | 20  | 91                    | 77   | 73   | 2.2 |
| Rochester     |      | L   | 32        | 28  | 18  | 172                   | 169  | 114  | 3.4 |
| Becker        | 2012 | LS  | 20        | 9   | 8   | 86                    | 74   | 62   | 2.1 |
| Lamberton     |      | L   | 14        | 14  | 9   | 107                   | 113  | 88   | 4.6 |

YR3 & YR5 data represents the average value for the control (No P, K, or S)  
 Colors represent expected response to applied fertilizer  
 blue – low, green – moderate, red - high



**Soil Fertility**



UNIVERSITY OF MINNESOTA | EXTENSION  
 Driven to Discover<sup>SM</sup>



193 bu/A, 21%

0 gal/A 10-34-0  
0 gal/A UAN  
0 gal/A ATS

June 21, Waseca

209 bu/A, 16%

4 gal/A 10-34-0 In-t  
8 gal/A UAN S. ba  
4 gal/A ATS S. ba

3  
0  
7

# Starter P and S for Continuous Corn - Yield

| Rochester 2010                              | Waseca 2010 | Rochester 2011 | Waseca 2011 |
|---------------------------------------------|-------------|----------------|-------------|
| -----bushels/acre-----                      |             |                |             |
| <b>APP (10-34-0) in-furrow</b>              |             |                |             |
| 208a                                        | 214a        | <b>195b</b>    | 194a        |
| 210a                                        | 214a        | <b>199a</b>    | 198a        |
| <b>UAN (28-0-0) surface dribble band</b>    |             |                |             |
| 209a                                        | 216a        | 197a           | 195a        |
| 209a                                        | 212a        | 198a           | 197a        |
| <b>ATS (12-0-0-26) surface dribble band</b> |             |                |             |
| 209a                                        | <b>209b</b> | <b>194b</b>    | 196a        |
| 209a                                        | <b>218a</b> | <b>196b</b>    | 197a        |
| 210a                                        | <b>215a</b> | <b>202a</b>    | 196a        |

# Sulfur Guideline Changes

## Minnesota 2016

- New guidelines assume a sulfate source is being used
- Application of elemental S is risky if being applied to a S deficient situation
- No reason to exceed a rate of 25 lbs S/ac

**Table 12. Broadcast Sulfate-Sulfur guidelines for corn grown in Minnesota**

|                                 | 0-6" Soil Organic Matter Concentration |       |        |
|---------------------------------|----------------------------------------|-------|--------|
| Crop Rotation                   | 0-2%                                   | 2-4%  | 4%+    |
| lb S/acre as SO <sub>4</sub> -S |                                        |       |        |
| Soybean/Corn                    | 10-25                                  | 10-15 | 0*     |
| Corn/Corn                       | 10-25                                  | 10-15 | 5-10** |
| Sandy Soils                     | 25                                     | 25-25 | 15-25  |

\*Research data suggest that a rate of 10 lbs of sulfate S may be warranted when corn follows soybean on poorly drained calcareous soils

\*\*A low rate of S is suggested when corn follows corn and SOM is 4% or greater. A rate of 10-15 lbs of S is suggested for corn following corn on reduced tillage in the presence of high levels of surface residue



Fe Deficient Corn??



Renville, MN  
June 2014

2014

- No S No Fe
  - 155 bu/ac
- + S No Fe
  - 168 bu/ac
- + S + Foliar Fe
  - 171 bu/ac

**2015**

- No Fe
  - 223 bu/ac
- + 3-6 GPA Redline
  - 221 bu/ac

**SOM > 5.0%**

# Research Questions

- Minnesota has maintained a efficiency factor for banded sulfur application
  - Reduce rate by 50%
- ATS is part elemental S and part sulfate-S
  - Is a rate reduction warranted?
- Some growers are utilizing ATS with pre-emerge herbicides
  - Is this a good idea?



# Research Objectives

1. Determine if a surface band application of S as ATS is more efficient than broadcast application of ATS or AMS
2. Determine if pre-emerge broadcast application of ATS is as an effective source of applying S compared to AMS broadcast at or before planting in continuous corn.



# Materials and Methods

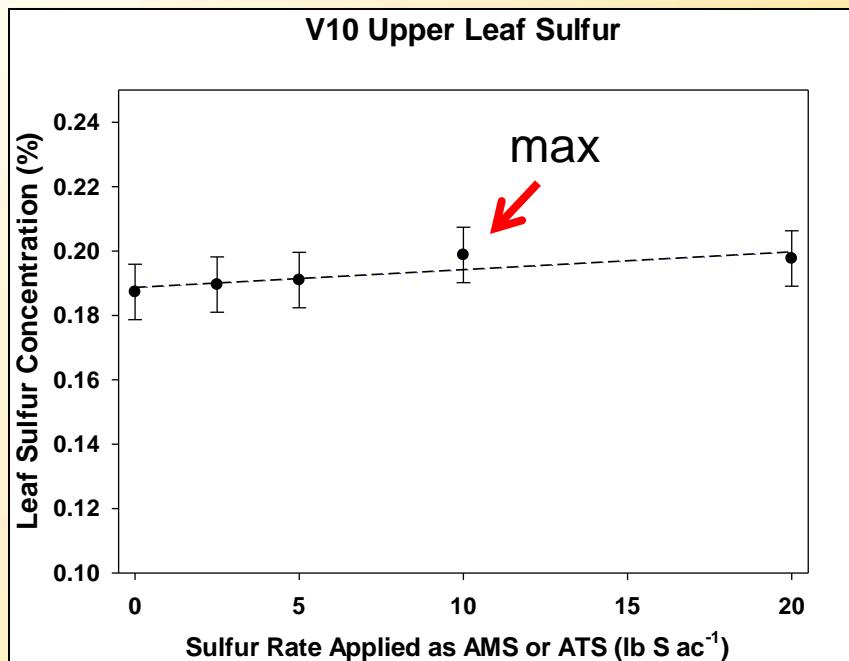
- 2 locations per year in continuous corn
  - 1 location where soil organic matter is  $\leq 3.0\%$
  - 1 location on poorly drained soil ( $>3.0\%$ )
- Sulfur Source x Timing
  - AMS applied at or before planting
  - ATS surface dribble band with the planter
  - ATS applied on the soil surface
- Sulfur Rate
  - 0, 2.5, 5, 10, and 20 lbs S/ac
- Nitrogen was balanced with Urea or UAN



# Locations: 2015-2016

|             |              | Soil    |          | Soil Test (0-6") |     |                    |     |     | 0-2'               |
|-------------|--------------|---------|----------|------------------|-----|--------------------|-----|-----|--------------------|
| Year        | Location     | Series  | County   | P                | K   | SO <sub>4</sub> -S | OM  | pH  | SO <sub>4</sub> -S |
|             |              |         |          | -----ppm-----    |     |                    | -%- |     | -lb/ac-            |
| <b>2015</b> | New Richland | Clarion | Waseca   | 20               | 134 | 7                  | 2.9 | 5.7 | 42                 |
|             | Waseca       | Webster | Waseca   | 13               | 165 | 6                  | 5.5 | 6.3 | 33                 |
| <b>2016</b> | Lamberton    | Storden | Redwood  | 12               | 100 | 5                  | 3.5 | 6.2 | 41                 |
|             | Renville     | Okaboji | Renville | <b>12</b>        | 175 | 6                  | 7.8 | 7.7 | 42                 |

P, Bray-P1 phosphorus; K ammonium acetate potassium; SO<sub>4</sub>-S, monocalcium phosphate extractable sulfate sulfur; OM, organic matter loss on ignition; pH, 1:1 soil:water.


†Olsen P test was used



# Ear Leaf %S at V10 and R2

## V10 Upper Leaf

S rate –  $P < 0.01$



## R2 Ear Leaf

S rate - ns



Thanks to:



American Agricultural Laboratory, Inc.

"Analysts You Can Grow With."

Formerly known as  
Olsen's Laboratory, Inc.



**Soil Fertility**



UNIVERSITY OF MINNESOTA | EXTENSION  
Driven to Discover<sup>SM</sup>

# Corn Grain Yield Data 2015

|           | New Richland†   |        |        |       | Waseca† |        |        |       |
|-----------|-----------------|--------|--------|-------|---------|--------|--------|-------|
| S Rate    | AMS-Br          | ATS-Br | ATS-Ba | Avg.‡ | AMS-Br  | ATS-Br | ATS-Ba | Avg.‡ |
| -lb S/ac- | -----bu/ac----- |        |        |       |         |        |        |       |
| 0         | 222             | 225    | 229    | 225   | 212     | 213    | 204    | 210   |
| 2.5       | 221             | 241    | 216    | 226   | 204     | 215    | 206    | 209   |
| 5.0       | 218             | 242    | 228    | 229   | 213     | 213    | 212    | 213   |
| 10.0      | 231             | 218    | 216    | 222   | 210     | 221    | 209    | 213   |
| 20.0      | 225             | 233    | 227    | 228   | 220     | 216    | 214    | 216   |
| Avg.‡     | 223b            | 232a   | 223b   |       | 212     | 216    | 209    |       |

† Sulfur source: ATS-Ba, Ammonium thiosulfate banded; ATS-Br, ammonium thiosulfate broadcast; AMS-Br, ammonium sulfate broadcast.

‡ Avg., treatment mean; within rows and columns, numbers followed by the same letter are not significantly different at the  $P \leq 0.05$  probability level.



**Soil Fertility**



UNIVERSITY OF MINNESOTA | EXTENSION  
Driven to Discover™

# Corn Grain Yield Data 2016

|           | Lamberton†      |        |        |       | Renville† |        |        |       |
|-----------|-----------------|--------|--------|-------|-----------|--------|--------|-------|
| S Rate    | AMS-Br          | ATS-Br | ATS-Ba | Avg.‡ | AMS-Br    | ATS-Br | ATS-Ba | Avg.‡ |
| -lb S/ac- | -----bu/ac----- |        |        |       |           |        |        |       |
| 0         | 213             | 203    | 203    | 206   | 222       | 210    | 209    | 214   |
| 2.5       | 209             | 205    | 196    | 204   | 222       | 209    | 218    | 216   |
| 5.0       | 214             | 194    | 212    | 207   | 231       | 214    | 221    | 222   |
| 10.0      | 208             | 210    | 202    | 207   | 221       | 226    | 215    | 221   |
| 20.0      | 207             | 224    | 207    | 213   | 227       | 219    | 230    | 225   |
| Avg.‡     | 210             | 207    | 204    |       | 225a      | 216b   | 219b   |       |

† Sulfur source: ATS-Ba, Ammonium thiosulfate banded; ATS-Br, ammonium thiosulfate broadcast; AMS-Br, ammonium sulfate broadcast.

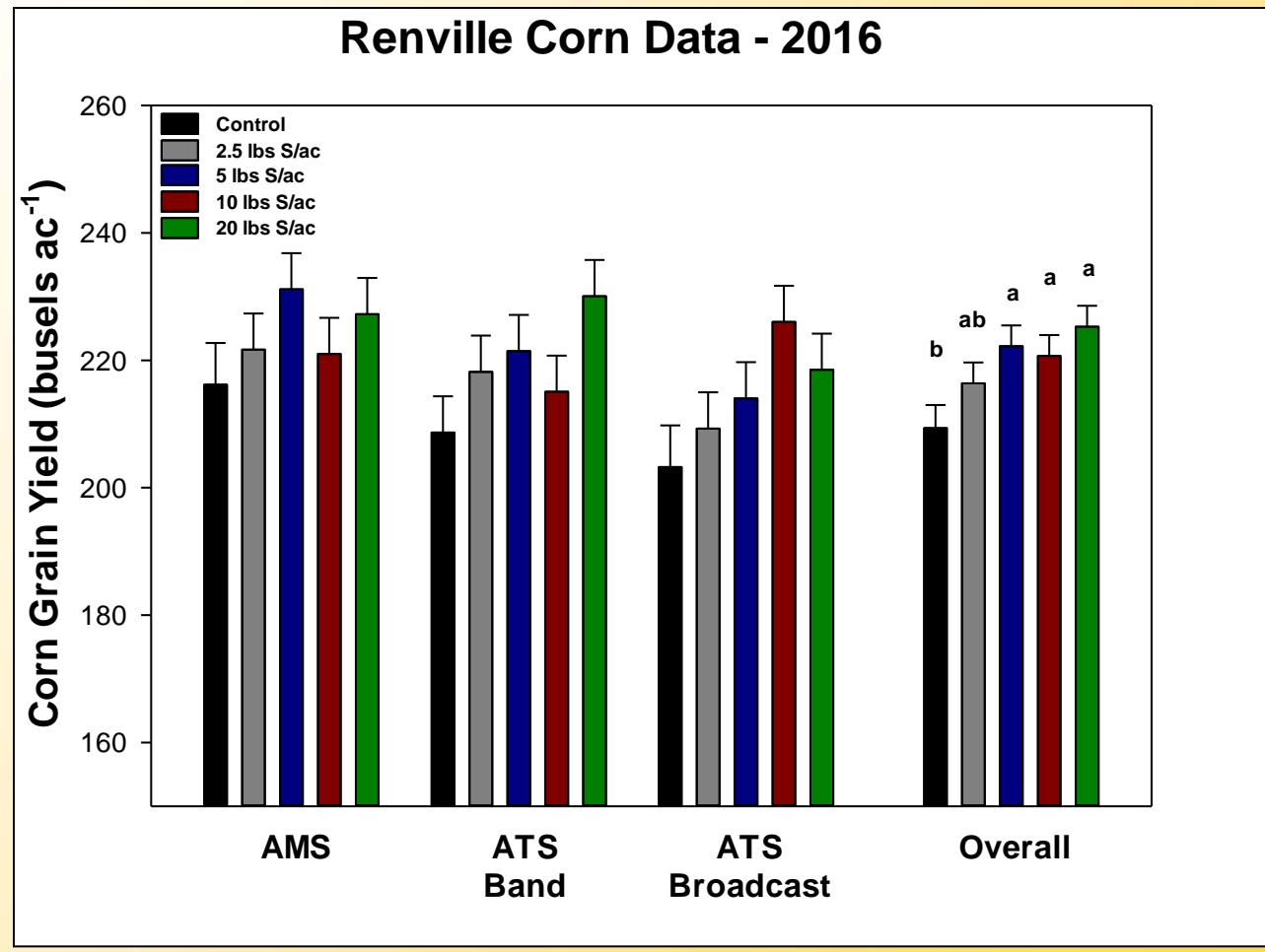
‡ Avg., treatment mean; within rows and columns, numbers followed by the same letter are not significantly different at the  $P \leq 0.05$  probability level.



**Soil Fertility**



UNIVERSITY OF MINNESOTA | EXTENSION  
Driven to Discover™


# 2-Year Overall Effects

| Sulfur Rate<br>---lb S ac <sup>-1</sup> --- | V5 NDRE | Grain Yield<br>----bushels ac <sup>-1</sup> ---- |
|---------------------------------------------|---------|--------------------------------------------------|
| 0                                           | 0.320b  | 212b                                             |
| 2.5                                         | 0.323b  | 214b                                             |
| 5                                           | 0.323b  | 216ab                                            |
| 10                                          | 0.323b  | 215b                                             |
| 20                                          | 0.331a  | 219a                                             |

\*No evidence of a significant difference among source or interactions between source and rate



# Renville Data Revisited



Data after cleaning out a few outliers

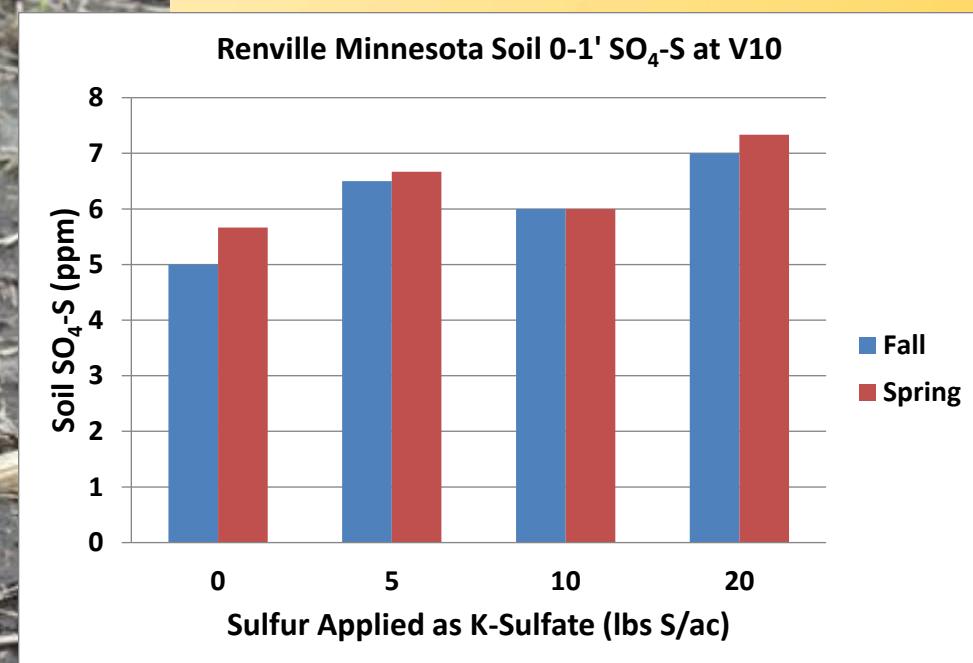
AMS – 223a  
ATS Band – 219ab  
ATS Broadcast – 214b

No significant interaction between source and rate

Significant variation in the amount of yield produced in the control among sources

Optimum rate – 5 lbs S/ac




**Soil Fertility**



UNIVERSITY OF MINNESOTA | EXTENSION  
Driven to Discover<sup>SM</sup>

# Renville, MN

## June 2016



Spring application of 5 lbs of S resulted in statistically similar soil SO<sub>4</sub>-S as 20 lbs of S



UNIVERSITY OF MINNESOTA | EXTENSION  
Driven to Discover<sup>SM</sup>

# Minnesota Practices

- With the application of S increasing it is getting hard to find large yield responses due to S in 1-year trials
- Farmers want to apply S with their P and K in the fall
  - Many farmers utilize elemental S because they are concerned about leaching of SO<sub>4</sub>-S
- The use of in-furrow starter is still strong in some areas
  - Sulfur application in-furrow is still risky



# Preliminary Conclusions

- The optimal rate of S on some higher (>3.0%) organic matter soils may be small (5 lb/ac)
  - ATS banded was as effective as AMS
  - Banding ATS would concentrate S near the root zone and would be better option than broadcast ATS which could increase the effectiveness of the SO<sub>4</sub>-S
- I would like to see more growers utilize a UAN/ATS option with the planter or as an early side-dress instead of fall applied elemental S
  - Flexibility to move some N application to spring



A photograph of a field of young corn plants with long, green, wavy leaves. The plants are growing in dark brown soil. The image is taken from a slightly elevated angle, showing the plants in rows.

# Thank You Questions?

*Daniel Kaiser*  
University of Minnesota  
612-624-3482  
[dekaiser@umn.edu](mailto:dekaiser@umn.edu)  
<http://z.umn.edu/nutrientmgmt>

