

Nitrogen and Phosphorus Management to Increase Nutrient Use Efficiency and Corn Grain Yield

Fred Below and Brad Bernhard

**Crop Physiology Laboratory
Department of Crop Sciences
University of Illinois at Urbana-Champaign**

Brad Bernhard Loves Corn

Average Soil Analysis at Crop Physiology Laboratory Research Sites

	Location		
	Yorkville	Champaign	Harrisburg
OM (%)	4.5	3.6	2.2
pH	6.3	6.3	6.6
CEC	21.9	19.6	13.2
P (ppm) [†]	45	38	26
K (ppm) [†]	197	166	133

[†] Mehlich 3 extraction

All soils are silt loams or silty clay loams

Test Your Knowledge of Agriculture and US Politics

- Which crop does President Trump like better, Corn or Soybean?

President Trump Likes Corn

Test Your Knowledge of High Yield Corn

- What is the world record corn yield and what is the corn yield gap?

The Corn Yield Gap

- World Record yield of 542.2740 bushels per acre in 2017
- US average yield of 178 bushels per acre in 2018
- Yield Gap = Record Yield – Average Yield = 364 bushels

The NCGA Corn Yield Contest

- 6 categories that include: state corn area (A & AA), irrigated, non-irrigated, conservation tillage with 3 winners in each category
- All 18 contest winners in 2017 exceeded 300, 5 exceeded 400, and 3 exceeded 500 bushels; while in 2018 only 16 exceeded 300, and only one exceeded 400 bushels

2018 National Corn Growers Contest Winners

Winners From I States

Kevin Kalb, Indiana @ 388.1

Mike Moyle, Idaho @ 351.2

Jerry Reinhart, Illinois @ 345.6

Nikia Kalb, Indiana @ 343.2

Shawn Kalb, Indiana @ 343.0

John Ruff, Iowa @ 333.1

Brad Wehr, Indiana @ 331.1

Strategy for Winning the NCGA Corn Yield Contest

- Feed (better plant nutrition) and protect a much higher density of the best ‘racehorse’ hybrids
- Make sure the crop is never stressed

Banding Fertilizer 4-6 Inches Deep Directly Under the Future Crop Row

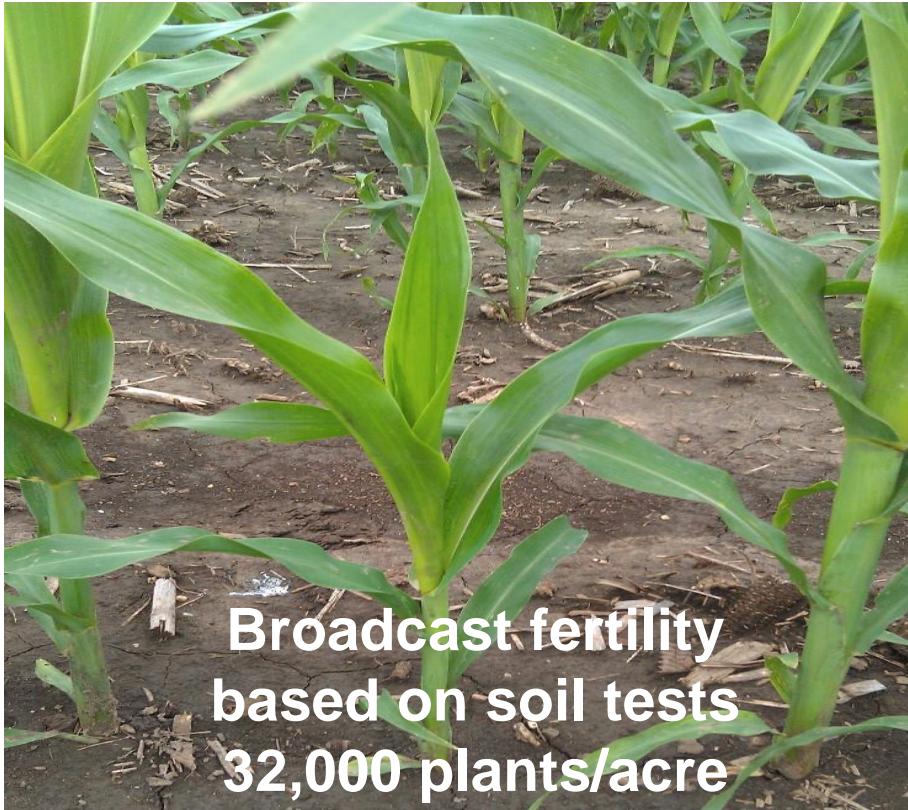
Crop
Physiology

Seeding Corn Crop 2 Inches Deep Directly Over the Fertilizer Band

Improved Growth with Banded Fertility

250 lbs/acre MicroEssentials = 30 N, 100 P₂O₅, 25 S, and 2.5 Zn

Improved Growth with Banded Fertility

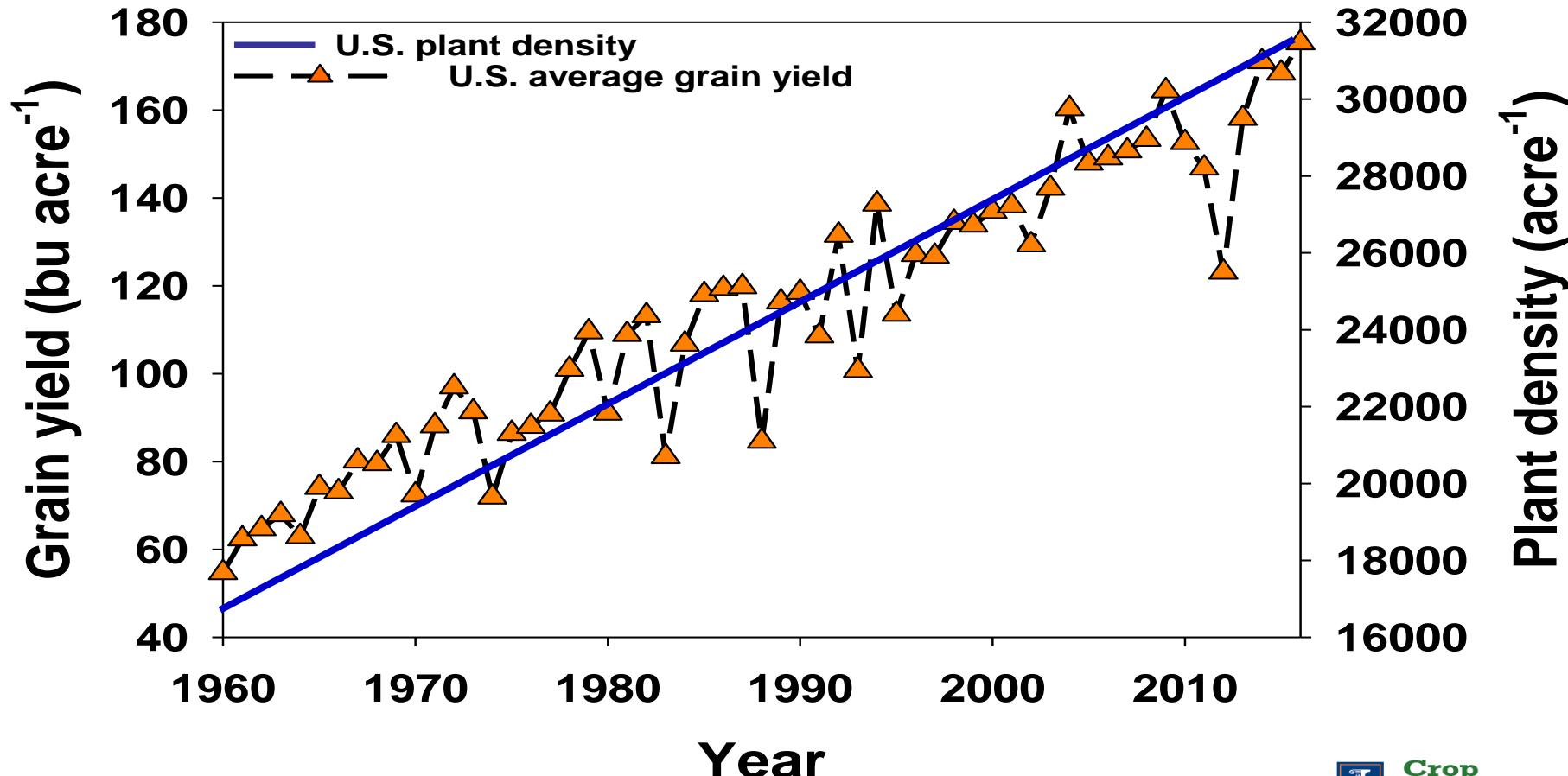


Champaign, IL June 7, 2017

**Crop
Physiology**

No Corn Plant Left Behind

Broadcast fertility
based on soil tests
32,000 plants/acre

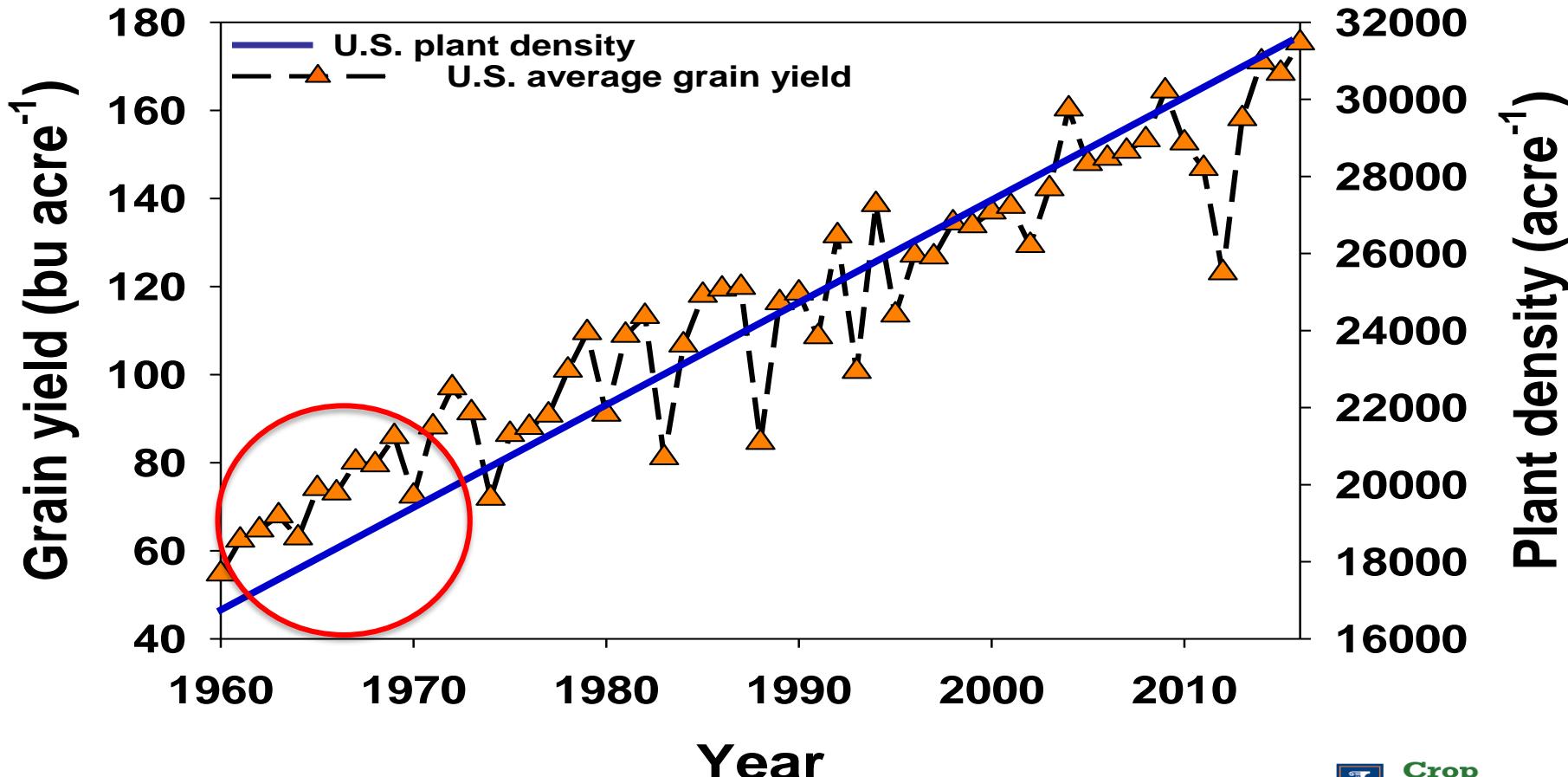


Banded fertility to
feed the plant
44,000 plants/acre

Strategy for Winning the NCGA Corn Yield Contest

- Feed (better plant nutrition) and protect a much higher density of the best ‘racehorse’ hybrids
- Make sure the crop is never stressed

How Have Corn Yields Increased?


Source USDA

Test Your Knowledge of High Yield Corn

- When were soil test values calibrated to corn yields?

In the 60's and Early 70's

Soil Test Values Calibrated to Yield in the 60's and 70's

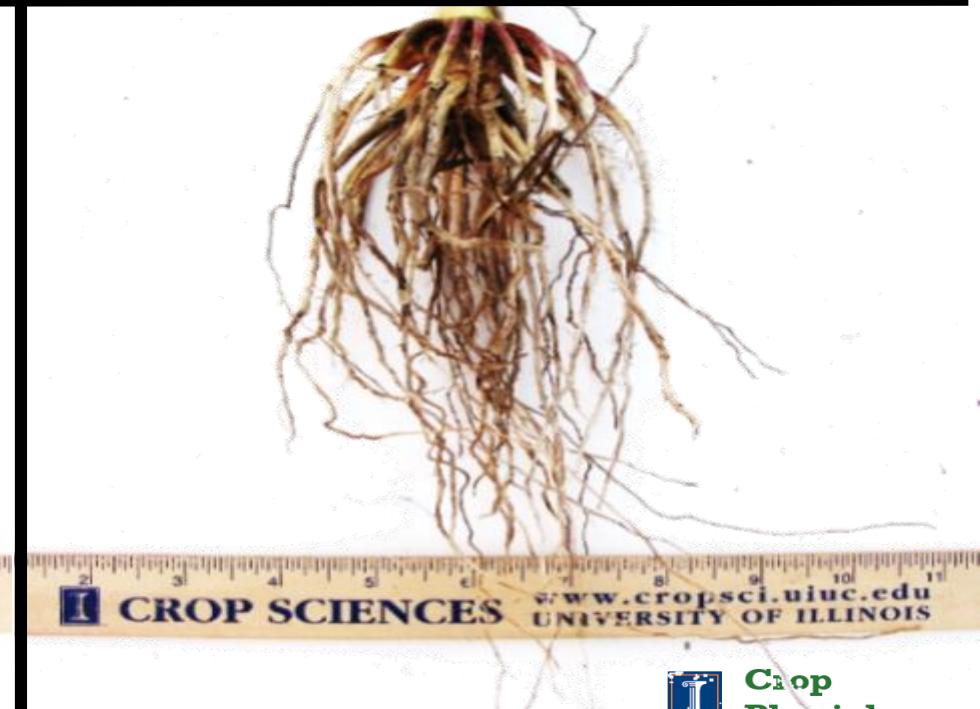
Source USDA

Test Your Knowledge of High Yield Corn

- What happens to the size of each plant's root system as the plant population is increased?

It Gets Smaller

Root Digging/ Washing



High Plant Density = Smaller Roots

Standard Population
32,000 plants/acre

High Population
44,000 plants/acre

Champaign, IL 2016

Fertility Needs for Corn Based on Soil Test Data

- **Soil test values calibrated to yield in the 60's and 70's**
- **Do higher plant populations and more productive germplasm necessitate better fertilization strategies for corn?**

Corn Fertility Recommendations

- Current = N based on expected yield and P and K on soil tests
- Future = Use application and fertilizer technologies to supply required crop nutrition

Nitrogen Management to Improve Grain Yield and Nutrient Use Efficiency

Test Your Knowledge of High Yield Corn

- Does weather impact nitrogen availability?

Weather Induced Nitrogen Loss

Test Your Knowledge of High Yield Corn

- Does nitrogen predominately move vertically (down) or horizontally (to the side) in the soil?

Nitrogen Deficiency to the Row Due to Vertical Soil Movement

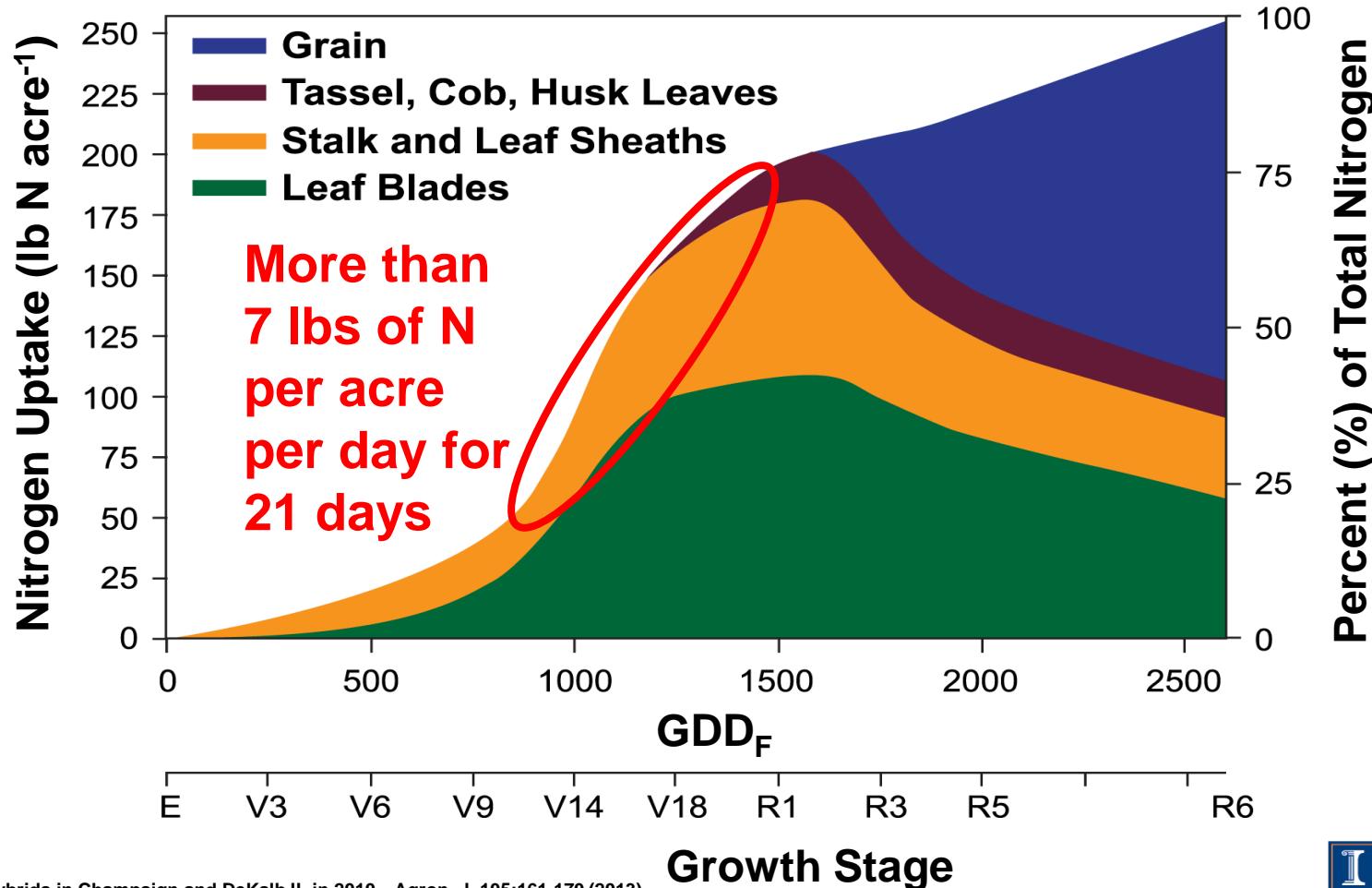
180 lbs N preplant (Left) vs 180 lbs preplant + 80 lbs sidedress (Right)

In-Season Y-Drop N Application

Research Y-Drop Applicator Courtesy of Yield 360

**Crop
Physiology**

Mechanical Y-Drop Research Applicator


Test Your Knowledge of High Yield Corn

- Are split applications of N better than applying all the N upfront at preplant?

Test Your Knowledge of High Yield Corn

- When does N need to be available for maximum N uptake and grain yield?

Nitrogen Uptake and Partitioning for 230 Bushel Corn

Are Split Applications of Nitrogen Better?

Are Split Applications of N Better than all at Planting?

Fertilizer Source

Urea and UAN

Application Timing

Upfront: All N applied at preplant

50/50 Split: 50% N at planting
50% N sidedressed at V8

* Total of 180 lbs of N / acre

Application Method

Planting
Broadcasted

V8 Growth Stage

Broadcasted
Center of Row
Y-Drop

Are Split Applications of N Better than all N at Planting?

Planting

No Nitrogen

Sidedress

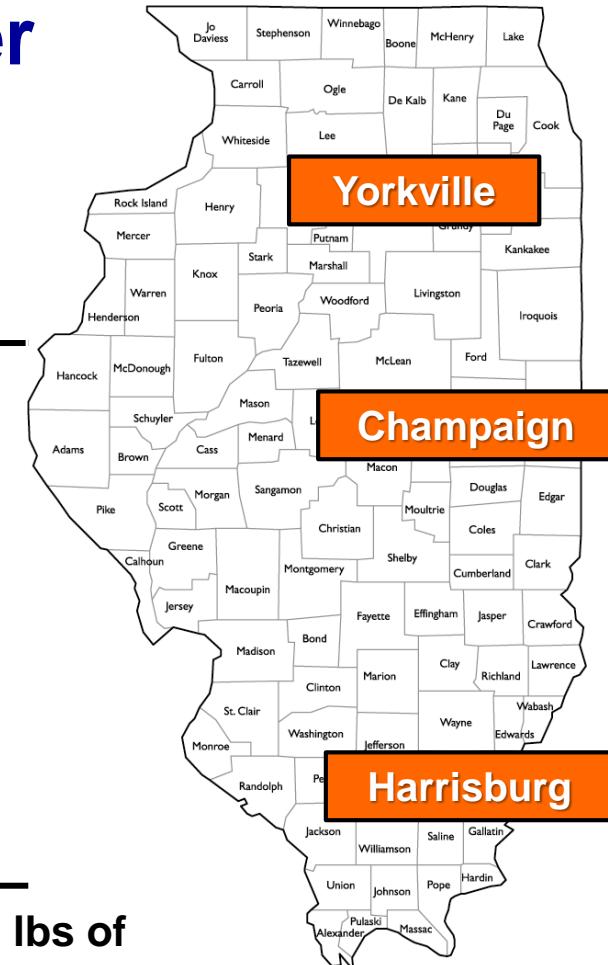
Urea Broadcast

Urea Broadcast

Urea Broadcast

Urea Broadcast

-


-

Urea Broadcast

UAN Mid-Row

UAN Y-Drop

All treatments (except the no N control) received a total of 180 lbs of N/acre. Split applications received 90 lbs of N just before planting and 90 lbs of N/acre at the V8 growth stage. Two years 2017 and 2018.

Urea Broadcast

UAN Center of Row

UAN Y-Drop

Are Split Applications of N Better than all N at Planting?

Planting

No Nitrogen

Urea Broadcast

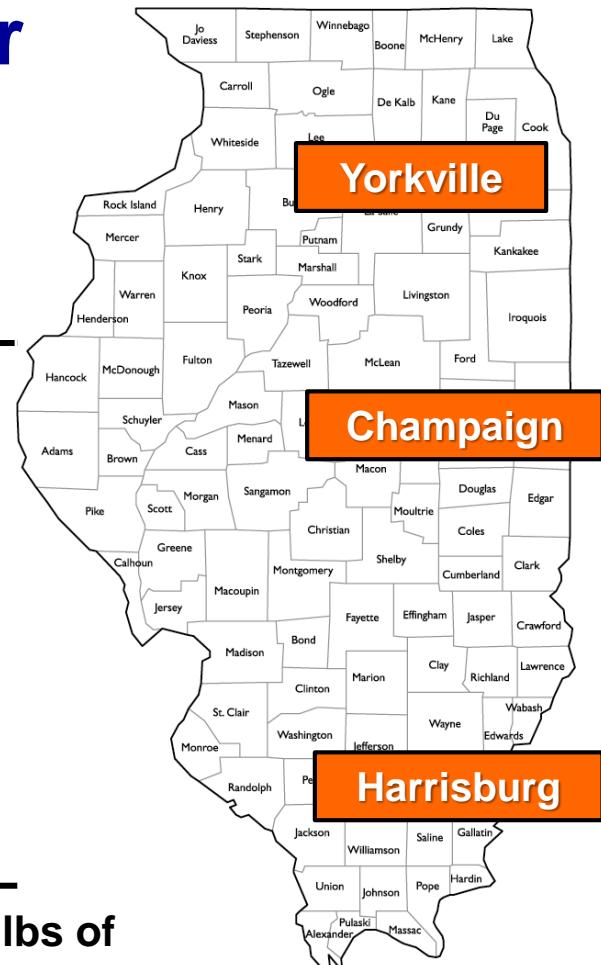
Urea Broadcast

Urea Broadcast

Urea Broadcast

Sidedress

-


-

Urea Broadcast

UAN Mid-Row

UAN Y-Drop

All treatments (except the no N control) received a total of 180 lbs of N/acre. Split applications received 90 lbs of N just before planting and 90 lbs of N/acre at the V8 growth stage. Two years 2017 and 2018.

Differences in Check Plot Yield Per Site

Year and Location	Check Plot Yield
	bushels/acre
2018 Harrisburg	97
2018 Champaign	103
2017 Champaign	184
2018 Yorkville	195
2017 Yorkville	208
2017 Harrisburg	224

Check Plot is yield without any N fertilizer application; what the soil supplies

Differences in Check Plot Yield Per Site

Year and Location

Check Plot Yield

bushels/acre

2018 Harrisburg 97

2018 Champaign 103

2017 Champaign 184

2018 Yorkville 195

2017 Yorkville 208

2017 Harrisburg 224

Check Plot is yield without any N fertilizer application; what the soil supplies

Crop
Physiology

Yield Difference from all N Applied Upfront and Sidedress with Different Placements

Check Plot Rank	Upfront Urea Broadcast bu/acre	Placement of 90 lbs N Sidedress [†]		
		Broadcast	Center Row	Y-Drop
18HB	190	-7	-2	9
18CU	222	-8	-17*	6
17CU	256	-3	-25*	-11
18YV	232	3	9	15*
17YV	265	7	0	13
17HB	265	8	9	11

[†] Split application received 90 lbs N as broadcast urea upfront

* Nitrogen treatment significantly different than Upfront Urea Broadcast at $\alpha=0.05$

Key Takeaways

- When the N supplied from the soil was low (as indicated by a low check plot yield), more N is needed at preplant

Key Takeaways

- Split applications of N increased yield in years and fields with high initial soil N, and the Y-drop method was the best way to sidedress N

What About Banding of Nitrogen?

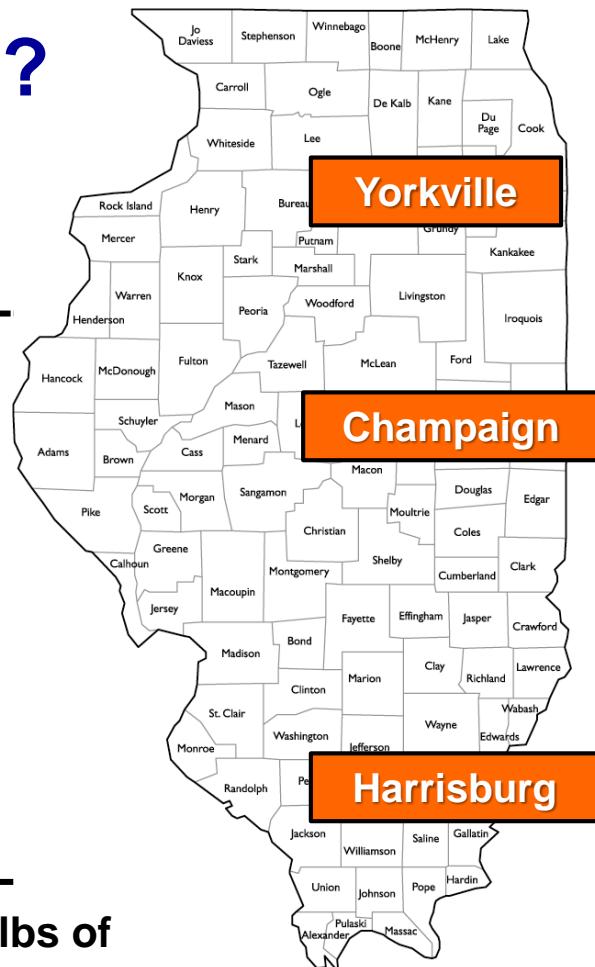
Is Banding Better than Broadcast?

Planting

No Nitrogen

Sidedress

Urea Broadcast


Urea Branded

ESN Banded

Urea Broadcast

1

All treatments (except the no N control) received a total of 180 lbs of N/acre. Split applications received 90 lbs of N just before planting and 90 lbs of N/acre at the V8 growth stage. Two years 2017 and 2018.

Yield Difference from all N Applied Upfront as Urea or Split Application with Some or all N Banded

Check Plot Rank	Upfront Urea Broadcast	90 lbs Banded Urea at Planting and 90 lbs Broadcast Urea at V8	180 lbs Banded ESN at Planting
	bu/acre	— Δ bu/acre —	
18HB	190	9	14*
18CU	222	-5	18*
17CU	256	18	30*
18YV	232	9	17*
17YV	265	14	10
17HB	265	17*	12*

* Nitrogen treatment significantly different than Upfront Urea Broadcast at $\alpha=0.05$

Key Takeaways

- Banded ESN directly under the crop row at planting, acted as both a preplant and a sidedress and was the best source and application method, especially when the check plot was low

Phosphorus Management to Improve Grain Yield

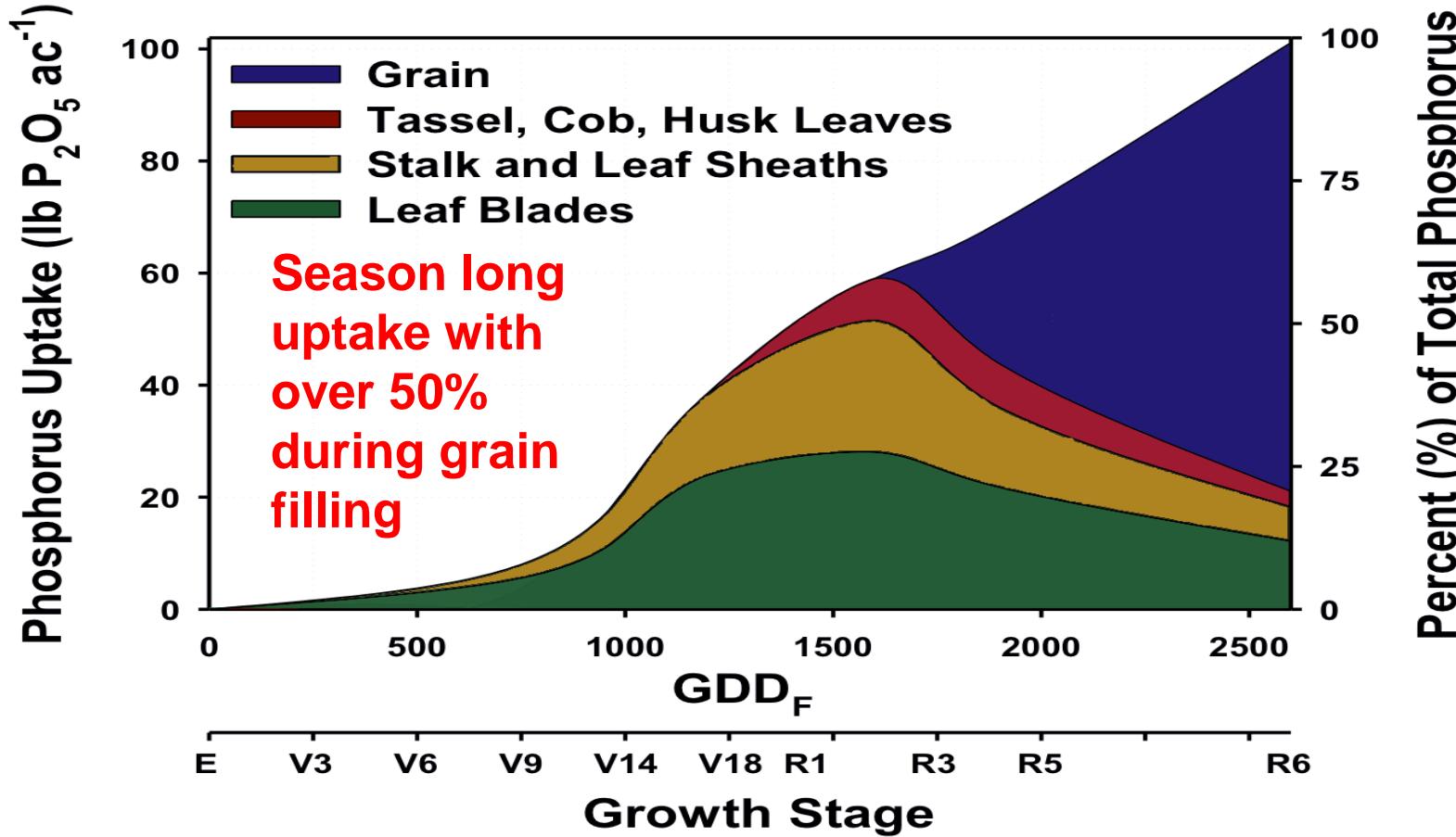
Research Objective

- Investigate different P fertilizer application methods, timings, and the use of Humic Acid to improve P availability and increase grain yield

Research Questions

- How much 10-34-0 can be put in furrow?
- Will sidedressing 10-34-0 with Y-drops at V8 increase late season P uptake?
- Can a humic acid improve P availability?

Effect of Properly Placed Fertilizer


3 gal 10-34-0 In Furrow

No Starter

Crop
Physiology

P Uptake & Partitioning for 230 Bushel Corn

Evaluations

Application Timing/Rate of 10-34-0

Planting	5 gallons/acre
	10 gallons/acre
V8 Sidedress	15 gallons/acre

Application Method

Planting: In-furrow

V8 Sidedress: Y-dropped

Fertilizer Additives

With/Without Hydra-Hume

In-Furrow Application Capabilities

Treatments Gallons of 10-34-0

In Furrow @ Planting

Sidedress @ V8

Control (0)

5

5 + HH

10

15

-

5

5

5 + HH

-

-

-

-

-

10

10

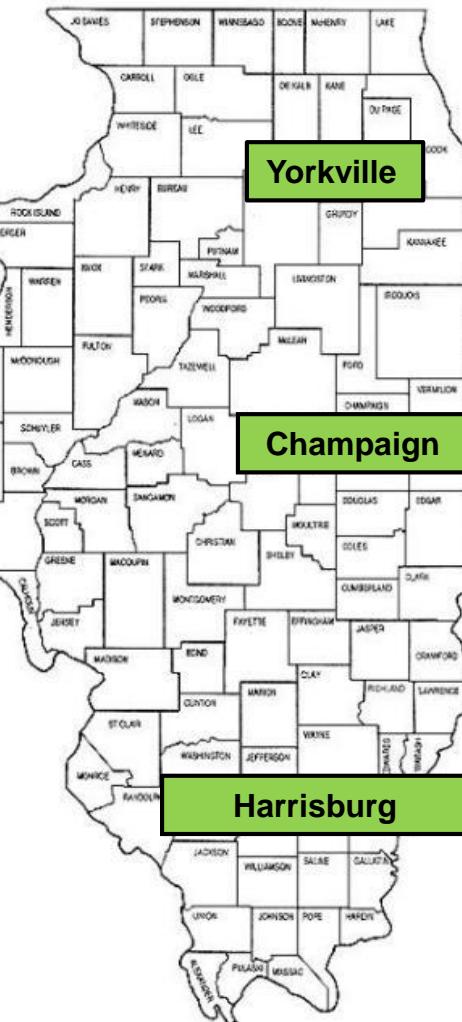
10 + HH

10 + HH

15

Base rate of 180 lbs N/acre before preplant

Hydra-Hume application rate was 1gal/10gal of 10-34-0


Crop
Physiology

Average Soil Analysis at Crop Physiology Laboratory Research Sites

	Location		
	Yorkville	Champaign	Harrisburg
OM (%)	4.5	3.6	2.2
pH	6.3	6.3	6.6
CEC	21.9	19.6	13.2
P (ppm) [†]	45	38	26
K (ppm) [†]	197	166	133

[†] Mehlich 3 extraction

All soils are silt loams or silty clay loams

Treatments Gallons of 10-34-0

In Furrow @ Planting

Sidedress @ V8

Control (0)

5

5 + HH

10

15

-

5

5

5 + HH

-

-

-

-

-

10

10

10 + HH

10 + HH

15

Base rate of 180 lbs N/acre before preplant

Hydra-Hume application rate was 1gal/10gal of 10-34-0

**Crop
Physiology**

Untreated

5 gallons 10-34-0

15 Gallons 10-34-0

Yield Difference From In Furrow 10-34-0

Treatment	Sidedress	Location				All
		Harrisburg	Champaign	Yorkville		
In-Furrow	Sidedress					
gallons 10-34-0		Δ bushels/acre				
5	-	+5	+10	+5	+7*	
5 + HH	-	+5	+5	+8	+7*	
10	-	-2	+3	+6	+3	
15		-5	-5	-5	-5	

Control Yields (bu/acre) 250 in Harrisburg, 250 in Champaign, 291 in Yorkville

*Significant at ($\alpha = 0.10$)

Crop
Physiology

Treatments Gallons of 10-34-0

In Furrow @ Planting

Sidedress @ V8

Control (0)

5

5 + HH

10

15

-

5

5

5 + HH

-

-

-

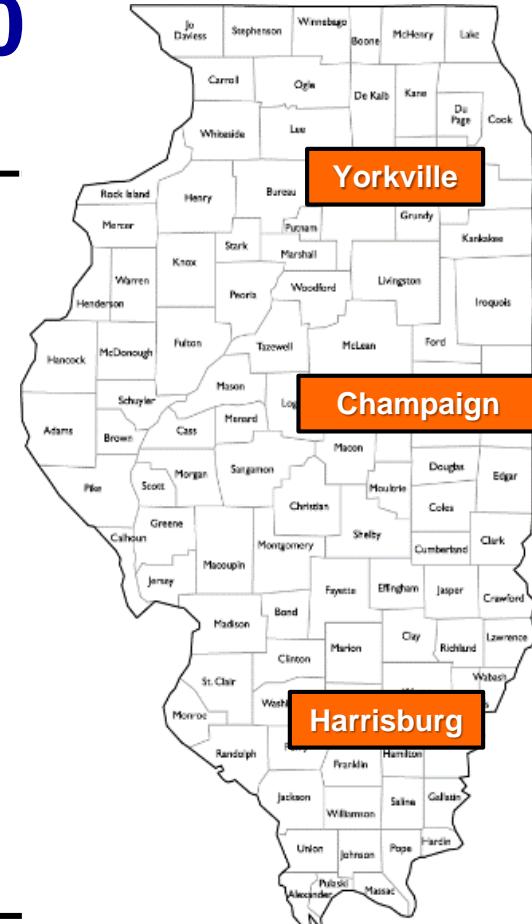
-

-

-

10

10


10 + HH

10 + HH

15

Base rate of 180 lbs N/acre before preplant

Hydra-Hume application rate was 1gal/10gal of 10-34-0

Crop
Physiology

Yield Difference From In Furrow plus Sidedress

Treatment		Location			
In-Furrow	Sidedress	Harrisburg	Champaign	Yorkville	All
gallons 10-34-0		Δ bushels/acre			
	10	+7	+14*	+9	+10*
5	10	+11*	+14*	+8	+11*
5	10 + HH	+15*	+20*	+9	+15*
5 + HH	10 + HH	+8	+13*	+11*	+11*
	15	+6	+17*	+8	+11*

Control Yields (bu/acre) 250 in Harrisburg, 250 in Champaign, 291 in Yorkville

*Significant at ($\alpha = 0.10$)

Crop
Physiology

Key Takeaways – In Furrow

- 5 gallons of 10-34-0 in furrow was the best rate for increasing yield, but it was not enhanced by humic acid
- 10 or 15 gallons of 10-34-0 in-furrow resulted in crop damage and reduced grain yield

Key Takeaways – Sidedress

- Y-drop applications of 10-34-0 at V8 consistently increased yield
- Combinations of in-furrow plus sidedress were not consistently better than sidedress alone
- Humic acid with the Y-drop applications tended to produce the highest yields

Crop Physiology 2018 Research Team

Crop Physiology Lab Research Sites & Farm Cooperators

Yorkville - Bob Stewart, Stewart Farms

Champaign - UI Research Farm

Harrisburg - Scott Berry, Berry Farms

The Crop Physiology Laboratory

Financial and Product Support for 2018

- AdvanSix
- Agrinos
- Agricen
- Agrocete
- Asilomar
- Avunia
- Balchem
- BASF
- Bayer
- Calmer Corn Heads
- Compass Minerals
- Crystal Green Fertilizer
- Fluid Fertilizer Foundation
- Helena
- ISA
- Illini FS
- Italpollina
- John Deere
- Mosaic
- Montag Mfg
- Netafim
- Nutrien
- Sipcam Agro
- Sirius Minerals
- Solvay
- Syngenta
- Tessenderlo Kerley
- United Prairie
- United Soybean Board
- Valent
- Verdesian
- West Central
- WinField United

Special Thanks to Fluid Fertilizer Foundation

For More Information:

Crop Physiology Laboratory

University of Illinois

<http://cropphysiology.cropsci.illinois.edu>

**Crop
Physiology**