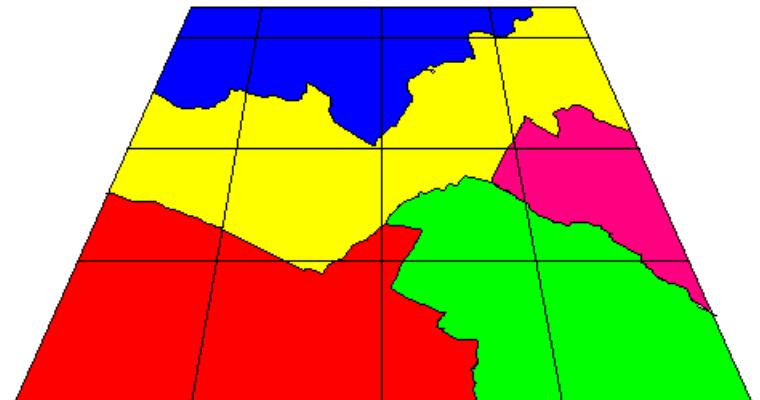


BASIC FORMULATION OF FLUIDS

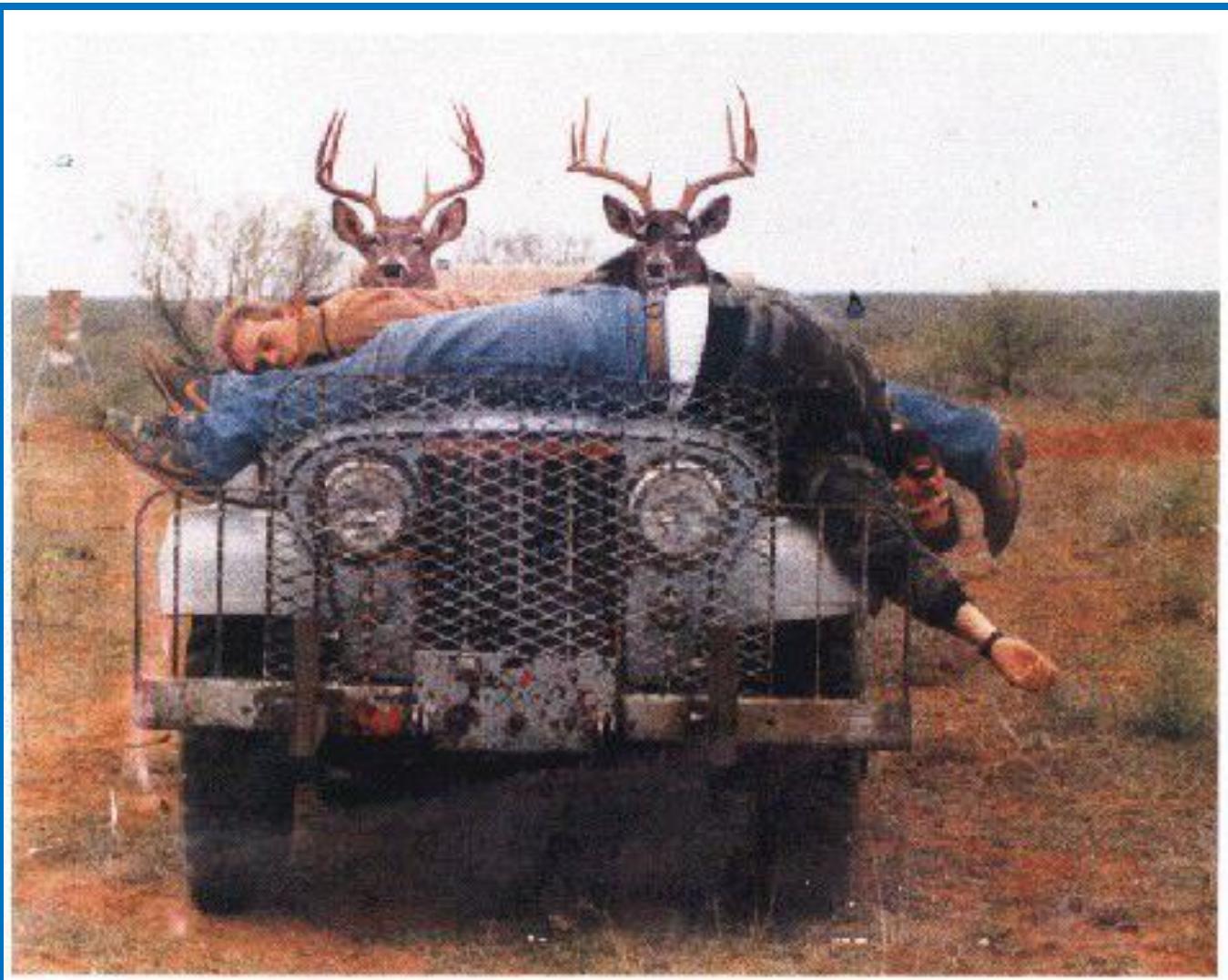

Jim May
J. May Equipment/ ATA, Inc.
Arlington, TX
Fluid Fertilizer Foundation
Council Bluffs, IA

PRECISION STARTS HERE !!

PRESCRIPTION FORMULATION AND PRODUCTION

The First Step In Precision,
Site Specific Application
Is To Produce a High
Quality Prescription
Blend.

The Correct Analysis and Quality Product


Repeated Stopping To Cleaning Nozzles or Strainers Defeats Precision Application

POOR FORMULATION PRODUCES POOR PRODUCT

ADD, SUBTRACT, MULTIPLY & DIVIDE

GET THINGS IN ORDER

Now That All That Is Out Of the Way,

GET STARTED !

FORMULATE TO A TON

- 1 TON, 2,000 POUNDS
- A TON FORMULA CAN BE EXTENDED OR REDUCED TO FIT ANY BATCH SIZE
- MIXERS READOUT IN POUNDS, BUT HAVE A TON RATING
- 10 TON BATCH IS 10 X EACH INGREDIENT
- IF YOU CALL ME WITH A PROBLEM, GIVE ME YOUR TON FORMULA, NOT BATCH POUNDS

USE A “FORMULATION SHEET”

- DO NOT “FORMULATE” ON A PIECE OF SCRATCH PAPER
- USE A DOUBLE CHECK FORM
- COPIES OF THE ONE WE USE ARE AVAILABLE ON REQUEST
- NO FORM, DRAW A TABLE FORM BEFORE STARTING
- DOUBLE CHECK YOUR MATH !!!

J. May Equipment Group

Customer: _____

FORMULATION WORKSHEET

Field #/ Location

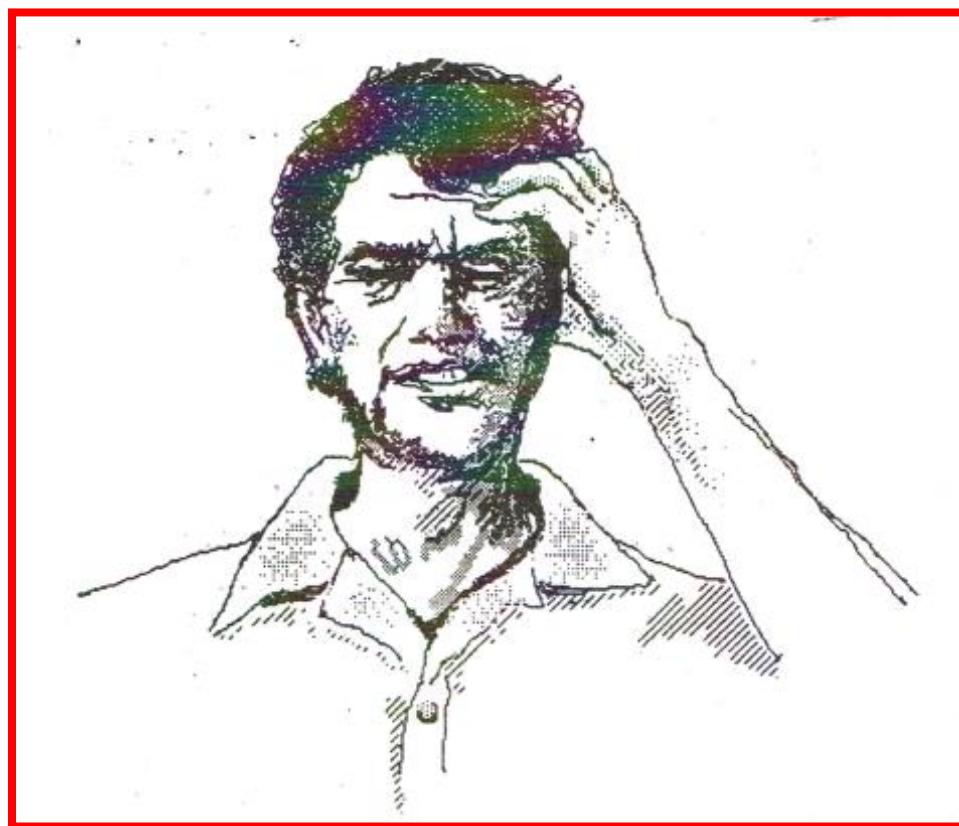
Date: _____

Number of Acres		X		Pounds Per Acre =		Total Pounds Required		1 to 3 Ammonia N to P ₂ O ₅ Ratio			
Total Pounds Required		÷ 2,000 =		Total Tons ÷ Batch Size =		Number Batches		Total P ₂ O ₅ ÷ 3 =		Total Ammonia N	
		GRADE						Total % Units		Less MAP/DAP N	
		N	P	K						Total	
		%	%	%	%	%	%			N from NH ₃ /Aqua	
Material	Pounds	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb. H ₂ O	Lb. Clay	Cost/ Ton	Cost / Lb.
TOTALS											

TEMPERATURE CALCULATION

HEATERS				VS	COOLERS			
Pounds	Product	BTU/ Lb.	Total BTU		Pounds	Product	BTU/ Lb.	Total BTU
NH ₃	1750				Urea		< 110	
Aqua	1400 / Lb. NH ₃				Ammonium Nitrate		< 145	
Phos Acid	100				Ammonium Sulfate		< 110	
Steam	1000				Potash		< 100	
160° Water	120				Total Coolers			
Total Heaters								

Total Heaters	
Less Total Coolers	
Net BTU	
Net BTU ÷ (Batch Weight X .8) = Degrees Temperature Change	° F


Example: +16,000 Net BTU ÷ (2000x.8) 1600 = +10° F

Starting Water/ Batch Temp + Change = Final Temp. (55°+10°= 65°F)

*H₂O CREDIT % EQUIVALENT

32-0-0 20%	28-0-0 25%	Aqua 70%	10-34-0 25%	12-0-0-26 25%
10-30-0 20%	Phos Acid 15%	High K-Base Grades	15%	

NOT ANOTHER FORMULA!!!

FIGURIN' IT OUT !!

- ***BASIC MATH***
- **ADD**
- **SUBRTACT**
- **MULTIPLY**
- **DIVIDE**
- ***FORMULATION IS KNOWING WHEN TO DO WHICH***

DIVISION= A PILE OF SOMETHING

- PHYSICAL SIZE OF A MATERIAL USED IN THE FORMULA
- POUNDS OF PLANT FOOD, DIVIDED BY THE PERCENTAGE CONCENTRATION OF THE RAW MATERIAL= PHYSICAL POUNDS

MULTIPLYING=WHAT IS IN THE PILE

- YOU CAN NOT SEE THE PLANT FOOD IN THE PILE
- A PRECENTAGE OF THE PHYSICAL PILE IS THE ACTUAL NUTRIENT CONTENT

SIMPLE FORMULA

CUT 32-0-0 TO 28-0-0

HOW MUCH WATER?

N-P-K (1 TON) 28% OF 2,000=560 Nitrogen

28-0-0

560-0-0 ($560 \div .32 = 1,750$ POUNDS)

WATER 250

32-0-0 1,750 (2,000 MINUS 1,750= 250 POUNDS WATER)

TOTAL 2,000

FORMULATE TO AN ANALYSIS

- PREDETERMINED ANALYSIS

N	P	K
5	10	10

ANALYSIS IS

5% NITROGEN

10% PHOSPHATE (P_2O_5)

10% K – POTASSIUM

FORMULATE TO A TON, 2,000 POUNDS

J. May Equipment Group
Customer: JOHN SMITH

FORMULATION WORKSHEET
Field #/ Location Jones Place

Date: 7-11-2006

Number of Acres 40 X 500 Pounds Per Acre = 20,000 Total Pounds Required Total Pounds Required 20,000 ÷ 2,000 = 10 Total Tons ÷ Batch Size (10)= 1 Number Batches							1 to 3 Ammonia N to P2O5 Ratio							
		GRADE						Total % Units 25%		Total P2O5 ÷ 3=				
		N 5	P 10	K 10	%	%	%			Less MAP/DAP N				
		%	%	%	%	%	%	* Credit Equiv.			N from NH3/Aqua			
Material	Pounds	Lb. 100	Lb. 200	Lb. 200	Lb.	Lb.	Lb.	Lb. H ₂ O	Lb. Clay	Cost/ Ton	Cost / Lb.	Total Cost	Pounds/ Batch	Scale Stop
Water	960											9600	9600	
0-0-62	323			200								3230	12830	
10-34-0	588	58.8	200									5880	18710	
32-0-0	129	41.2										1290	20000	
TOTALS	2000	100	200	200								20000		

TEMPERATURE CALCULATION

HEATERS				VS	COOLERS			
Pounds	Product	BTU/ Lb.	Total BTU		Pounds	Product	BTU/ Lb.	Total BTU
NH ₃		1750				Urea	< 110	
Aqua		1400 / Lb. NH ₃				Ammonium Nitrate	< 145	
Phos Acid		100				Ammonium Sulfate	< 110	
Steam		1000				Potash	< 100	
160° Water		120						
Total Heaters				Total Coolers				

Total Heaters	
Less Total Coolers	
Net BTU	
Net BTU ÷ (Batch Weight X .8) = Degrees Temperature Change	° F

Example: +16,000 Net BTU ÷ (2000x.8) 1600 = +10° F

Starting Water/ Batch Temp + Change = Final Temp. (55°+10°= 65°F)

*H₂O CREDIT % EQUIVALENT

32-0-0 20%	28-0-0 25%	Aqua 70%	10-34-0 25%	12-0-0-26 25%
10-30-0 20%	Phos Acid 15%	High K-Base Grades 15%		

SUSPENSIONS

- SAME FORMULATION PROCEDURE
- THEY HAVE SOME SOLIDS THAT TEND TO SETTLE OUT
- REDUCE PARTICLE SIZE OR INCREASE VISCOSITY
- MOST DO BOTH
- SUSPENSION AGENT “ATTAPULGITE CLAY”
- SUSPEND THE SOLIDS WITH CLAY
- CLAY FORMS A MATRIX LIKE HAY STRAW
- PARTICLES SET ON THE “STRAWS”
- CLAY CONTENT DETERMINED BY PLANT FOOD CONCENTRATION AND EXPERIENCE

CLAY RULE OF THUMB

Liquid clay is only 25% clay but twice as effective as dry clay

PERCENT PLANT FOOD	% DRY CLAY	% LIQUID CLAY
35% TO 40%	1%	2%
30% TO 34%	1.5%	3%
24% TO 29%	2%	4%

COLD MIX SUSPENSION

- USE A 10-30-0 PHOSPHATE BASE GRADE
- A SUSPENSION AGENT IS REQUIRED, CLAY DRY OR LIQUID
- TAKE CREDIT FOR THE BASE GRADE CLAY CONTENT
- CLAY BEFORE NITROGEN SOLUTION

J. May Equipment Group

Customer: Charles Smith Field #/ Location Field #7,

FORMULATION WORKSHEET

Date: _____

Number of Acres 40		X 600		Pounds Per Acre = 24,000		Total Pounds Required		1 to 3 Ammonia N to P2O5 Ratio						
Total Pounds Required		24,000 ÷ 2,000 = 12		Total Tons ÷ Batch Size = 1 Number Batches		Total P2O5 ÷ 3 =				Total Ammonia N				
		GRADE						Total % Units 36%		Less MAP/DAP N				
		N 10	P 8	K 18	%	%	%			Total				
		%	%	%	%	%	%	* Credit Equiv.		N from NH3/Aqua				
Material	Pounds	Lb. 200	Lb. 160	Lb. 360	Lb.	Lb.	Lb.	Lb. H2O	Lb. Clay	Cost/ Ton	Cost / Lb.	Total Cost	Pounds/ Batch	Scale Stop
WATER	406							406					4872	4872
10-30-0	533	53.3	160					106	8				6396	11268
CLAY	22												264	11532
32-0-0	458	146.7						92					5496	17028
0-0-62	581			360									6972	24000
TOTALS	2000	200	160	360				604						24000

TEMPERATURE CALCULATION

HEATERS				VS	COOLERS			
Pounds	Product	BTU/ Lb.	Total BTU		Pounds	Product	BTU/ Lb.	Total BTU
NH3		1750				Urea	< 110	
Aqua		1400 / Lb. NH3				Ammonium Nitrate	< 145	
Phos Acid		100				Ammonium Sulfate	< 110	
Steam		1000				Potash	< 100	
160° Water		120						
Total Heaters				Total Coolers				

Total Heaters	
Less Total Coolers	
Net BTU	
Net BTU ÷ (Batch Weight X .8) = Degrees Temperature Change	° F

Example: +16,000 Net BTU ÷ (2000x.8) 1600 = +10° F

Starting Water/ Batch Temp + Change = Final Temp. (55° + 10° = 65°F)

*H2O CREDIT % EQUIVALENT

32-0-0	20%	28-0-0	25%	Aqua	70%	10-34-0	25%	12-0-0-26	25%
10-30-0	20%	Phos Acid	15%	High K-Base Grades	15%				

HOT MIX SUSPENSION

- 10-30-0 PHOSPHATE BASE GRADE
- DRY CLAY, 1 ½%
- **CAUTION**, 1 TO 3 AMMONIA NITROGEN TO P_2O_5 RATIO APPLIES
- BEST SEQUENCE
- CALCULATE THE HEAT OF REACTION

J. May Equipment Group

Customer: INVENTORY Field #/ Location

FORMULATION WORKSHEET

Date: 7-15-06

Number of Acres		X	Pounds Per Acre =		Total Pounds Required		1 to 3 Ammonia N to P2O5 Ratio							
Total Pounds Required			÷ 2,000 = Total Tons ÷ Batch Size =		Number Batches		Total P2O5 ÷ 3 =		200	Total Ammonia N				
		GRADE						Total % Units 40%		Less MAP/DAP N		126		
		N 10	P 30	K 0	%	%	%			Total	74	N from NH ₃ /Aqua		
Material	Pounds	Lb. 200	Lb. 600	Lb. 0	Lb.	Lb.	Lb.	Lb. H ₂ O	Lb. Clay	Cost/ Ton	Cost / Lb.	Total Cost	Pounds/ Batch	Scale Stop
WATER	726													
11-52-0	577	63	300											
NH ₃	45	37												
11-52-0	577	63	300											
NH ₃	45	37												
CLAY	30													
TOTALS	2000	200	600	0										

TEMPERATURE CALCULATION

HEATERS				VS	COOLERS			
Pounds	Product	BTU/ Lb.	Total BTU		Pounds	Product	BTU/ Lb.	Total BTU
90	NH ₃	1750	157500			Urea	< 110	
	Aqua	1400 / Lb. NH ₃				Ammonium Nitrate	< 145	
	Phos Acid	100				Ammonium Sulfate	< 110	
	Steam	1000				Potash	< 100	
	160° Water	120						
Total Heaters		157500		Total Coolers				

Total Heaters	157500
Less Total Coolers	-----
Net BTU	157500
Net BTU ÷ (Batch Weight X .8) = Degrees Temperature Change	+98 ° F

Example: +16,000 Net BTU ÷ (2000x.8) 1600 = +10° F

Starting Water/ Batch Temp + Change = Final Temp. (55° +10° = 65° F)

*H₂O CREDIT % EQUIVALENT

32-0-0	20%	28-0-0	25%	Aqua	70%	10-34-0	25%	12-0-0-26	25%
10-30-0	20%	Phos Acid	15%	High K-Base Grades	15%				

FORMULATE TO AN ACRE

- EVERYTHING IS STILL %
- SIMPLE STEPS
- #1 ADD UP THE PLANT FOOD (N+P+K)
- #2 PICK A CONCENTRATION
- #3 TOTAL PLANT FOOD ÷
CONCENTRATION = RATE PER ACRE
- #4 EACH NUTRIENT (N-P-K) ÷ RATE PER
ACRE= ANALYSIS
- #5 FORMULATE TO THE ANALYSIS, 1 TON

QUICK WITH CUSTOMER, EASY FOR THE MIX PLANT

<ul style="list-style-type: none">• SOIL TEST CALL FOR:• 180 Pounds Of N• 90 Pounds Of P• 130 Pounds Of K• 400 Nutrient Pounds Per Acre• 40% Concentration• $400 \div .40 = 1000\text{P/A}$	<ul style="list-style-type: none">• $180 \div 1000 \text{ P/A} = .18\text{N}$• $90 \div 1000 \text{ P/A} = .09\text{P}$• $130 \div 1000 \text{ P/A} = .13\text{K}$• Analysis To Formulate 18-9-13• Every pound of the product will contain• 18%N-9%P-13%K
--	---

J. May Equipment Group

Customer: Billy Williams Field #/ Location #10

FORMULATION WORKSHEET

Date: 4-21-06

Number of Acres		25 X 1000		Pounds Per Acre =		Total Pounds Required		1 to 3 Ammonia N to P2O5 Ratio			
Total Pounds Required		25000 ÷ 2,000 = 12.5		Total Tons ÷ Batch Size =		1 Number Batches		Total P2O5 ÷ 3 =		Total Ammonia N	
		GRADE						Total % Units 40%		Less MAP/DAP N	
		N	P	K						Total	
		%	%	%	%	%	%	* Credit Equiv.		N from NH ₃ /Aqua	
Material	Pounds	Lb.	Lb.	Lb.	Lb.	Lb.	Lb.	Lb. H ₂ O	Lb. Clay	Cost/ Ton	Cost / Lb.
WATER	92										1150
32-0-0	960	307.1									12000
0-0-62	419		260								5237
10-34-0	529	52.9	180								6613
TOTALS	2000	360	180	260							25000

TEMPERATURE CALCULATION

HEATERS			VS	COOLERS			
Pounds	Product	BTU/ Lb.	Total BTU	Pounds	Product	BTU/ Lb.	Total BTU
	NH ₃	1750			Urea	< 110	
	Aqua	1400 / Lb. NH ₃			Ammonium Nitrate	< 145	
	Phos Acid	100			Ammonium Sulfate	< 110	
	Steam	1000			Potash	< 100	
	160° Water	120					
Total Heaters				Total Coolers			

Total Heaters	
Less Total Coolers	
Net BTU	
Net BTU ÷ (Batch Weight X .8) = Degrees Temperature Change	° F

Example: +16,000 Net BTU ÷ (2000x.8) 1600 = +10° F

Starting Water/ Batch Temp + Change = Final Temp. (55°+10°= 65°F)

*H₂O CREDIT % EQUIVALENT

32-0-0 20%	28-0-0 25%	Aqua 70%	10-34-0 25%	12-0-0-26 25%
10-30-0 20%	Phos Acid 15%	High K-Base Grades	15%	

ONE MORE ACRE FORMULA

- SOYBEAN BLEND
- 15 Pounds Of N
- 45 Pounds Of P
- 110 Pounds Of K
- 170 Nutrient Pounds Per Acre
- 40% Concentration
- $170 \div .40 = 425\text{P/A}$

- $15 \div 425 \text{ P/A} = .035\text{N}$
- $90 \div 425 \text{ P/A} = .106\text{P}$
- $110 \div 425 \text{ P/A} = .259\text{K}$
- Analysis To Formulate
 - 3.5-10.6-25.9
- Every pound of the product will contain
 - 3.5%N-10.6%P-25.9%K

EASY BLEND

- ROUND OFF THE 3.5-10.6-25.9
- FORMULATE TO 4-11-26
- REAL FORMULATORS GO FOR THE DECIMAL POINTS
- IT IS JUST AS EASY TO FORMULATE TO THE EXACT NEED
- PRECISION AGRICULTURE STARTS AT THE FORMULATION SHEET

J. May Equipment Group

Customer: Ted Johnson Field #/ Location Soybeans

FORMULATION WORKSHEET

Date: 4-15-06

Number of Acres		X	Pounds Per Acre =			Total Pounds Required		1 to 3 Ammonia N to P2O5 Ratio						
Total Pounds Required			÷ 2,000 = Total Tons ÷ Batch Size =			Number Batches	Total P2O5 ÷ 3 =			Total Ammonia N				
		GRADE						Total % Units 40%		Less MAP/DAP N				
		N 3.5%	P 10.6%	K 25.9%						Total				
								* Credit Equiv.		N from NH ₃ /Aqua				
Material	Pounds	Lb. 70	Lb. 212	Lb. 518	Lb.	Lb.	Lb.	Lb. H ₂ O	Lb. Clay	Cost/ Ton	Cost / Lb.	Total Cost	Pounds/ Batch	Scale Stop
WATER	438													
10-30-0	707	70.7	212											
CLAY	20							10						
0-0-62	835			518										
TOTALS	2000	70.7	212	518										

TEMPERATURE CALCULATION

HEATERS				VS	COOLERS			
Pounds	Product	BTU/ Lb.	Total BTU		Pounds	Product	BTU/ Lb.	Total BTU
	NH ₃	1750				Urea	< 110	
	Aqua	1400 / Lb. NH ₃				Ammonium Nitrate	< 145	
	Phos Acid	100				Ammonium Sulfate	< 110	
	Steam	1000				Potash	< 100	
	160° Water	120				Total Coolers		
Total Heaters								

Total Heaters	
Less Total Coolers	
Net BTU	
Net BTU ÷ (Batch Weight X .8) = Degrees Temperature Change	° F

Example: +16,000 Net BTU ÷ (2000x.8) 1600 = +10° F

Starting Water/ Batch Temp + Change = Final Temp. (55°+10°= 65°F)

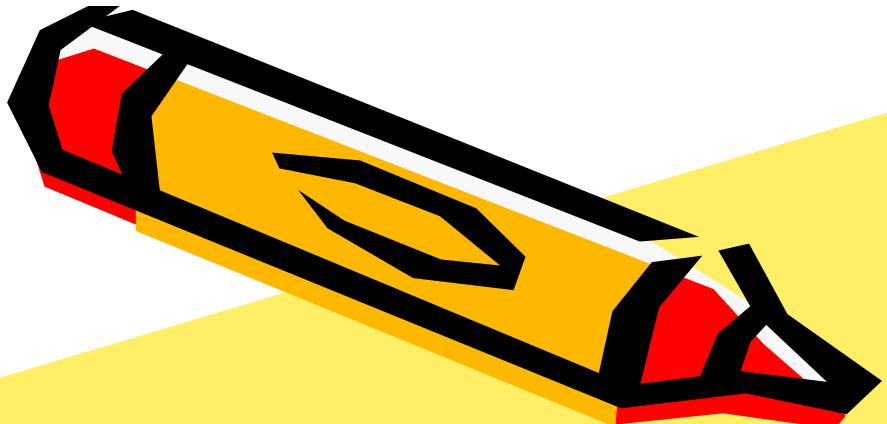
*H₂O CREDIT % EQUIVALENT

32-0-0 20%	28-0-0 25%	Aqua 70%	10-34-0 25%	12-0-0-26 25%
10-30-0 20%	Phos Acid 15%	High K-Base Grades	15%	

REVIEW FOR PER ACRE

- EVERYTHING IS STILL %
- SIMPLE STEPS
- #1 ADD UP THE PLANT FOOD (N+P+K)
- #2 PICK A CONCENTRATION
- #3 TOTAL PLANT FOOD ÷
CONCENTRATION = RATE PER ACRE
- #4 EACH NUTRIENT (N-P-K) ÷ RATE PER
ACRE= ANALYSIS
- #5 FORMULATE TO THE ANALYSIS, 1 TON

FORMULATION FOR SUCCESSFUL CROPS


A photograph of a cotton field. The plants are tall and green, with white cotton bolls visible. A person wearing a red baseball cap and a dark jacket is standing in the foreground on the left, facing away from the camera towards the right. The sky is clear and blue.

TEXAS COTTON

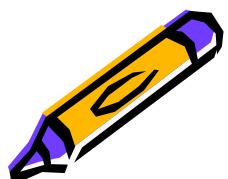
Just when you think you will
never get it,

It just comes to
you!!!!

Thanks For Attending

!!!!

Jim May


J. May Equipment / ATA, Inc.

Arlington, Texas

Fluid Fertilizer Foundation

Council Bluffs, IA

Dec. 11 & 12, 2019

