

UNIVERSITY OF MINNESOTA EXTENSION

MAKING A DIFFERENCE IN MINNESOTA: ENVIRONMENT + FOOD & AGRICULTURE + COMMUNITIES + FAMILIES + YOUTH

Combining 4R Nutrient Management and Ecological Intensification to Advance Corn Production

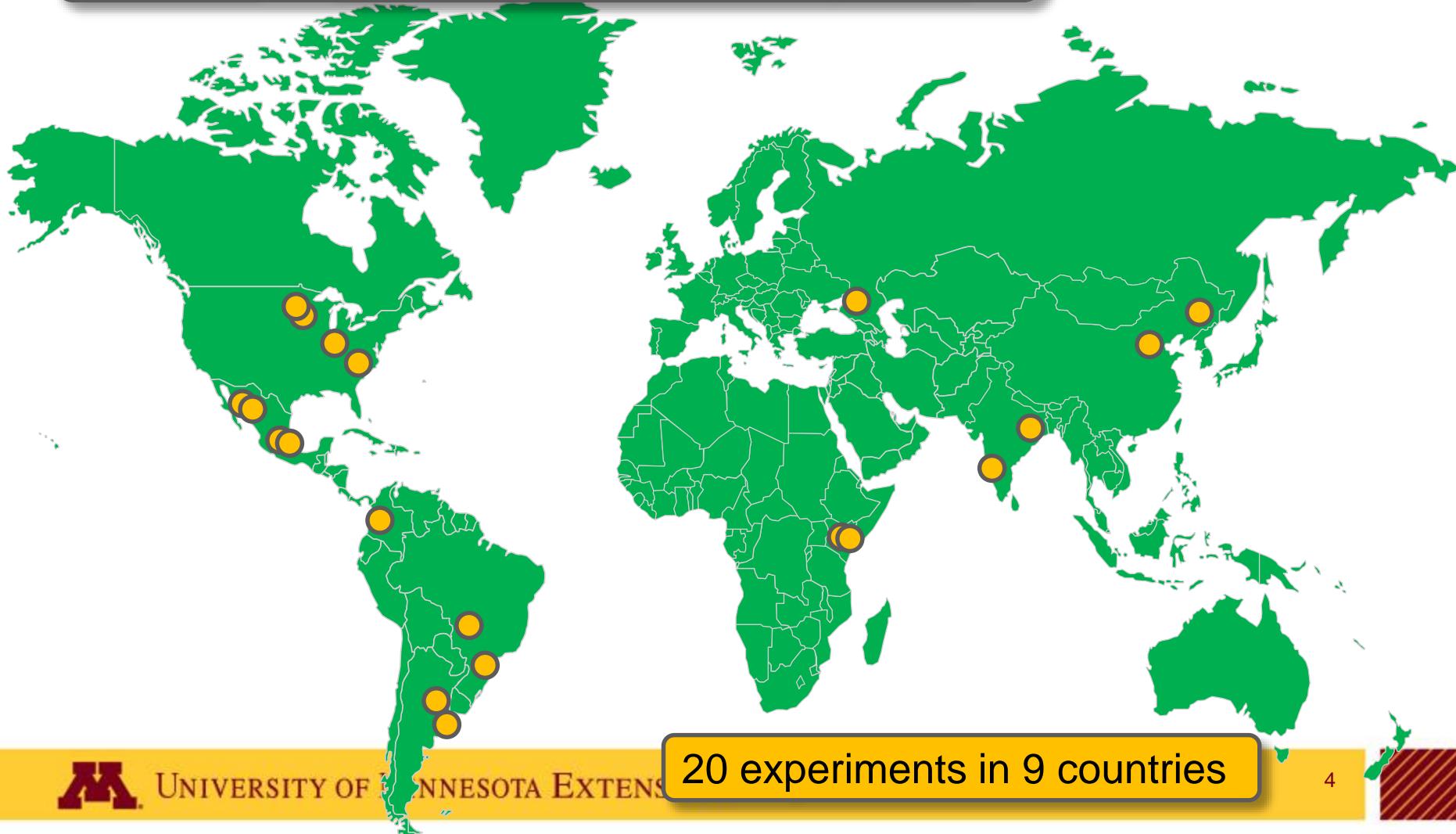
**Jeffrey Vetsch and Dr. Jeffrey Coulter,
University of Minnesota**

z.umn.edu/corn

Grand challenge

- Global crop production must increase substantially to meet the needs of a rapidly growing human population
 - 7.7 billion now, 9.7 billion by 2050 (+26%)
- Constraints to increasing crop production:
 - Availability of land, nutrients, water, energy, etc.
 - Variability & change in climate & pests
 - Soil degradation

Photo: businessinsider.com


Grand challenge

- Society desires cropping systems that are both productive and environmentally responsible
 - Demand for locally-sourced food
 - Documented production practices
- Collectively, these issues represent one of the greatest challenges of the 21st century
- Examine if 4R nutrient management and sustainable intensification can improve yield, profitability and environmental stewardship of current cropping systems.

Global network of experiments

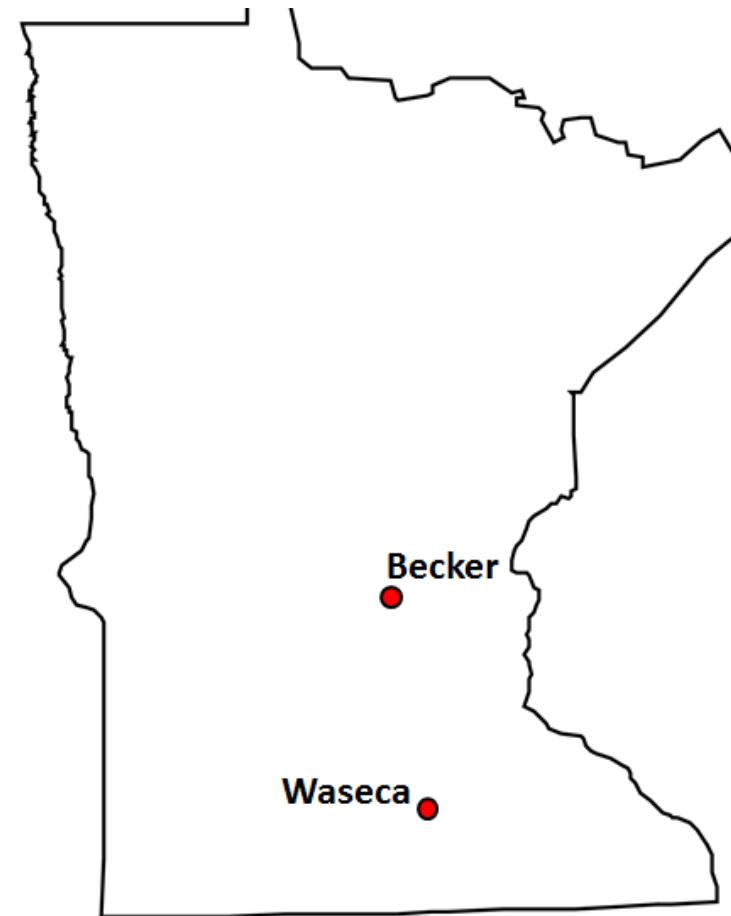
Compare normal vs. intensive agronomics with
standard vs. advanced fertilizer management

UNIVERSITY OF MINNESOTA EXTENSION

Research Questions

- What yield levels are possible?
- How far are current yields from these levels?
- Is standard fertilizer management capable of attaining yields at levels close to yield potential?

UNIVERSITY OF MINNESOTA EXTENSION


Sustainability Questions

- How does managing for high yields affect profitability?
- What are the environmental effects?

UNIVERSITY OF MINNESOTA EXTENSION

- **Waseca (2013 – 2020)**
 - Nicollet clay loam
 - Patterned tile drainage
- **Becker (2014 – 2019)**
 - Irrigated
 - Hubbard-Mosford loamy sand

- **Continuous corn**

- Requires top management for high yields
- Greater risk of nutrient losses

- **Irrigated sands**

- High yield potential
- Greater risk of crop nutrient deficiency
- Greater risk of nutrient losses

Normal agronomics

Intensive agronomics (sustainable intensification)

Standard
fertilizer
management

Advanced
fertilizer
management

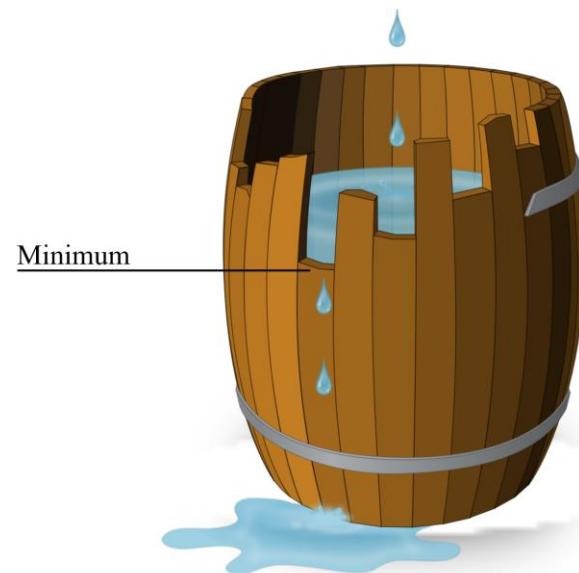
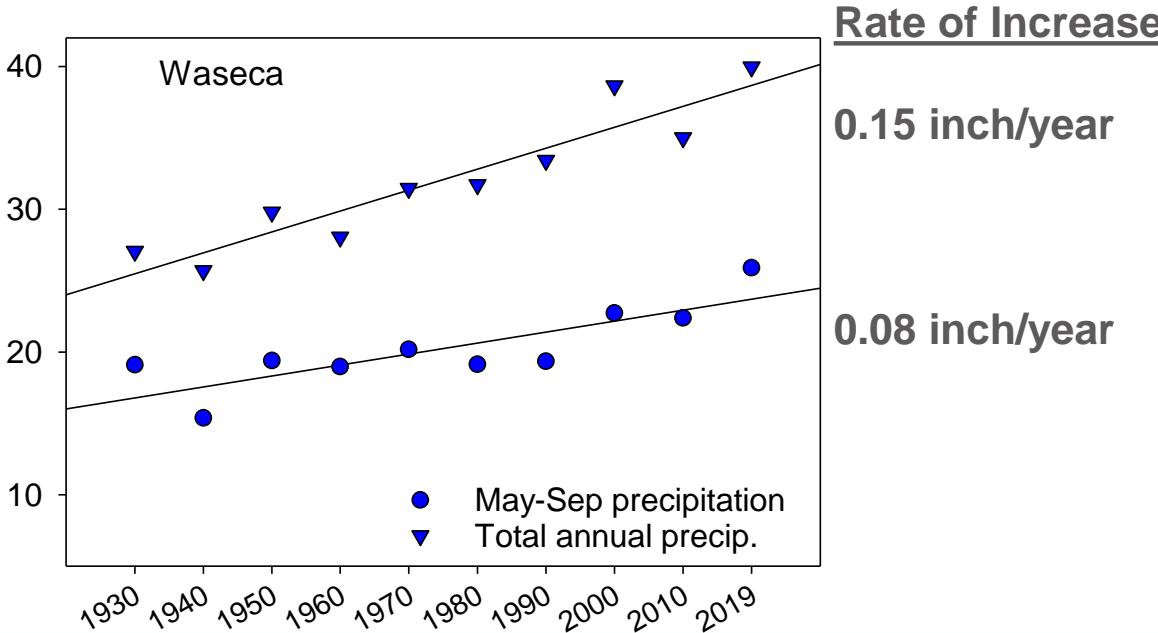
Standard
fertilizer
management

Advanced
fertilizer
management

- **'Systems' treatments developed at the start of the project & upgraded for the 2018 growing season**
 - Input from crop advisors, industry agronomists & farmers

UNIVERSITY OF MINNESOTA EXTENSION

Agronomic treatments – Waseca



	Normal	Intensive
Corn stover harvested (%)	0	40
Hybrid maturity (CRM)	101	105
Planting rate (seeds/acre)	36,000	41,000
Fungicide at tasseling	No	Yes *

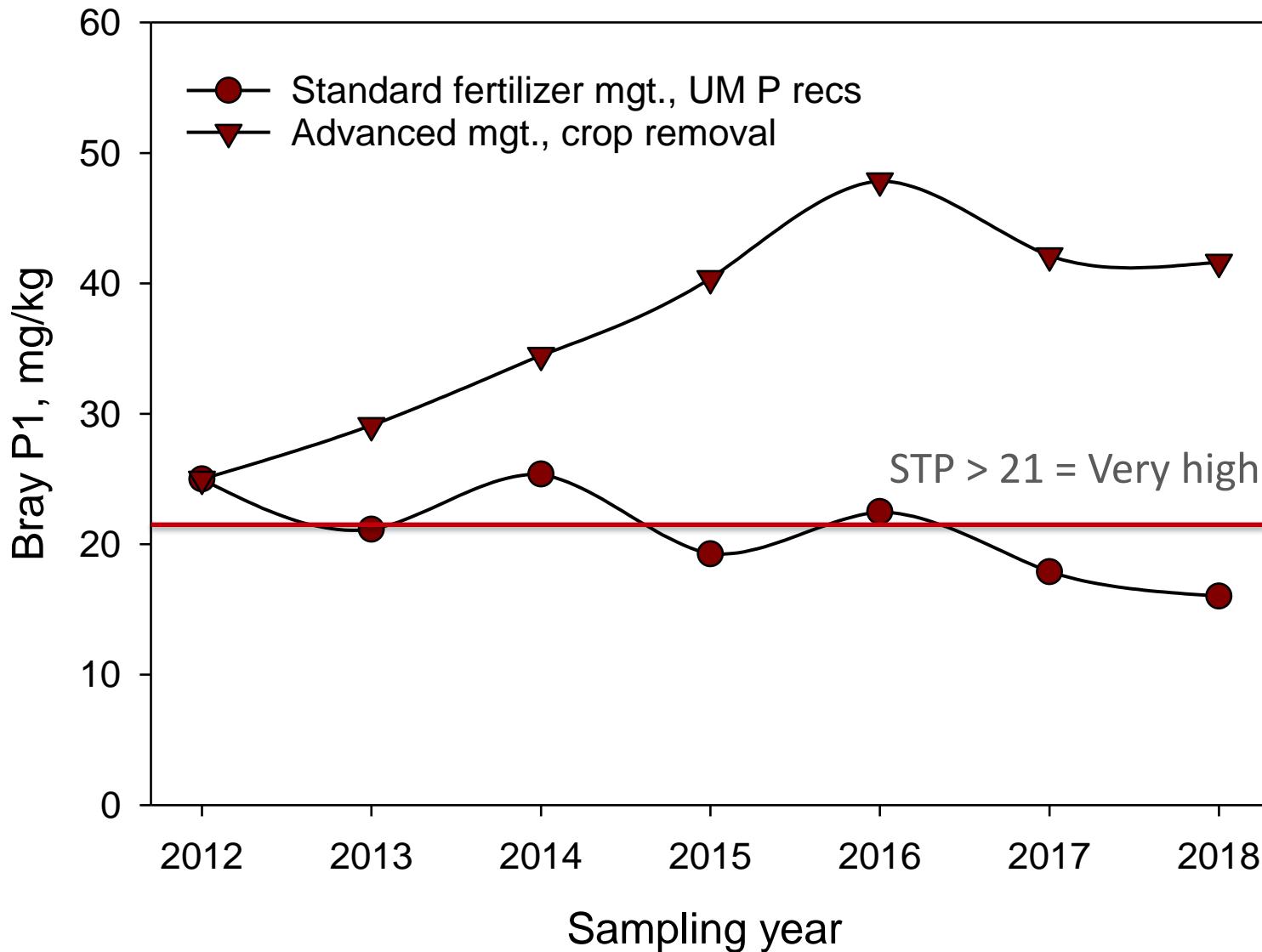
* Fungicide application began in 2018

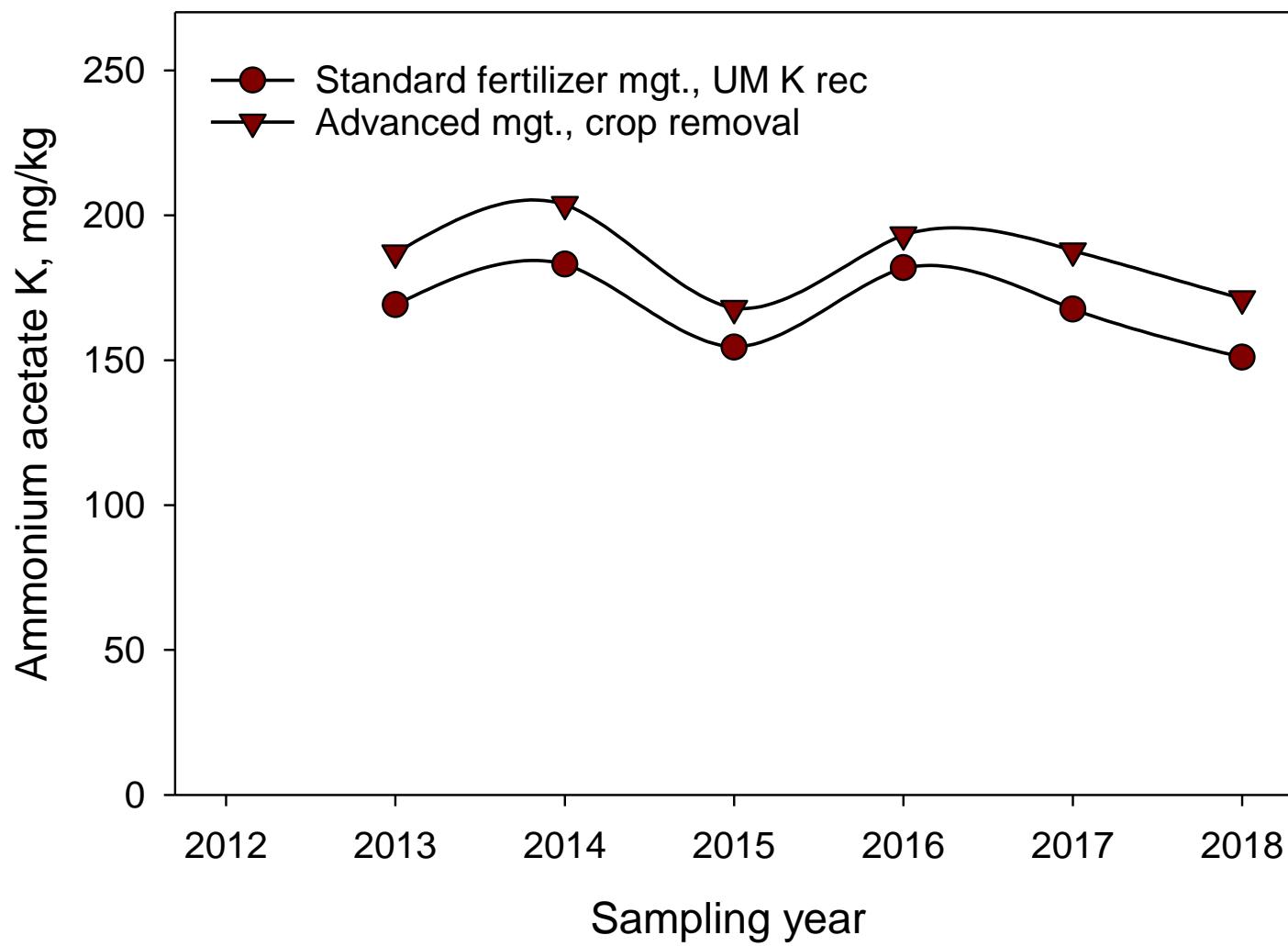
Nitrogen

- Often the most limiting nutrient for corn
- Application in excess of corn requirements reduces risk of yield loss, but with economic & environmental consequences
- Increasing precipitation making N management difficult

wikipedia.org

Fertilizer treatments	Standard	Advanced
S	20 lb SO ₄ /ac	20 lb SO ₄ /ac
P	U of M guidelines [^]	50% grain removal [*]
K	U of M guidelines [^]	100% grain removal [*]
10-34-0 in furrow	4 gal/ac	4 gal/ac
Surface-banded starter (2" x 0")	---	7 gal/ac 28-0-0 + 2 gal/ac 12-0-0-26
Pre-plant N (urea)	175 lb N/ac	111 lb N/ac
V6 N (28-0-0, injected)	---	40 lb N/ac
V14 N (28-0-0, Y-DROPs)	---	40 lb N/ac ⁺
Total N	180 lb N/ac	220 lb N/ac


*


[^] **U of M:** P-only starter (16 lb P₂O₅/ac), K-broadcast (30 lb K₂O/ac)

^{*} **Advanced:** P rate reduced from 100% to 50% of grain removal in 2018, grain removal was 86 lb P₂O₅/ac and 69 lb K₂O/ac (assumed 240 bu/ac)

⁺ V14 N application added in 2018

- Yield gap = 16 to 64 bu/ac (average = 31 bu/ac)

LSD (0.05)

- Greatest yield = advanced fertilizer mgt. + intensive agronomics

- Moderate yield = advanced fertilizer mgt. or intensive agronomics

Agronomic management	Normal	Normal	Intensive	Intensive
Fertilizer management	Standard	Advanced	Standard	Advanced
----- year -----	----- grain yield (bu/ac) -----			
2013	193 c	215 b	210 b	233 a
2014	92 c	121 b	124 b	156 a
2015	203 c	220 b	234 a	242 a
2016	214 c	220 b	233 a	239 a
2017	209 c	230 b	228 b	238 a
2018	213 b	224 a	218 b	229 a
2019	177 c	192 ab	186 b	199 a
7-year average	186 c	203 b	205 b	219 a

Agronomic management	Normal	Normal	Intensive	Intensive
Fertilizer management	Standard	Advanced	Standard	Advanced
Cost of treatments for partial budget analysis	----- \$/ac -----			
Raking, baling, & moving stover (2.7 round bales/ac)	-	-	27.81	27.81
Seed (\$3.50/1,000 seeds)	126.00	126.00	143.50	143.50
Fungicide + application (\$15.00/ac)	-	-	15.00	15.00
P ₂ O ₅ pre-plant + application (\$0.54/lb P ₂ O ₅)	-	23.22	-	23.22
K ₂ O pre-plant + application (\$0.31/lb K ₂ O)	9.30	21.39	9.30	21.39
Urea pre-plant + application (\$0.44/lb N)	77.00	48.40	77.00	48.40
28-0-0 at planting (\$0.44/lb N)	-	9.24	-	9.24
12-0-0-26 at planting (\$1.32/gal)	-	2.64	-	2.64
28-0-0 at V6 (\$0.44/lb N)	-	17.60	-	17.60
Custom rate for 28-0-0 at V6 (\$10.45/ac)	-	10.45	-	10.45
28-0-0 at V14 (\$0.44/lb N)	-	17.60	-	17.60
Custom rate for 28-0-0 at V14 (\$6.90/ac)	-	6.90	-	6.90
Total	212.30	283.44	272.61	343.75

Cost of drying grain = \$0.045/point/bu

Value of grain = \$3.50/bu

Revenue from stover (2.7 bales/ac) for intensive agronomics = \$94.50/ac

- Greatest net return in all years & on average with intensive agronomics + standard fertilizer mgt.
- In the last 2 years with intensive agronomics, net return for advanced fertilizer mgt. was only \$23-31 less than that with standard fertilizer mgt.

LSD (0.05)

Agronomic management	Normal	Normal	Intensive	Intensive
Fertilizer management	Standard	Advanced	Standard	Advanced
----- year -----	----- partial net return (\$/ac) -----			
2013	399 b	381 b	523 a	507 a
2014	72 b	68 b	262 a	268 a
2015	473 c	441 d	645 a	586 b
2016	521 c	455 d	654 a	589 b
2017	479 c	455 c	600 a	553 b
2018	480 ab	436 c	493 a	462 b
2019	373 b	349 c	428 a	405 a
7-year average	400 c	369 d	515 a	481 b

- Agronomic NUE & corn N recovery efficiency were greatest with intensive agronomics & either level of fertilizer mgt.
- With intensive agronomics, advanced fertilizer mgt. did not improve agronomic NUE or corn N recovery efficiency (due to the additional 40 lb N/ac)

Agronomic management	Fertilizer management	7-year average Agronomic NUE (increase in yield (bu/ac) per lb N/ac applied)	6-year average Corn N recovery efficiency (increase in N uptake (lb N/ac) per lb N/ac applied)
Normal	Standard	0.58 b	0.53 b
Normal	Advanced	0.55 b	0.53 b
Intensive	Standard	0.66 a	0.62 a
Intensive	Advanced	0.61 ab	0.56 ab

LSD (0.05)

Agronomic treatments – Becker (irrigated)

	Normal	Intensive*
Hybrid maturity (CRM)	96	103
Planting rate (seeds/acre)	36,000	41,000

* Partial removal of corn stover discontinued in fall 2017

Fertilizer treatments	Standard	Advanced
S	25 lb SO ₄ /ac	25 lb SO ₄ /ac
P	U of M guidelines ^	50% grain removal *
K	U of M guidelines ^	UM, UW Research *
10-34-0 in furrow	4 gal/ac	4 gal/ac
V2 N (urea)	40 lb N/ac	40 lb N/ac +
V6 N (urea)	185 lb N/ac	70 lb N/ac
V12 N (urea)	---	70 lb N/ac
VT N (urea)	---	45 lb N/ac
Total N	230 lb N/ac	230 lb N/ac

[^] **U of M:** P-only starter (16 lb P₂O₅/ac), K-broadcast (35 lb K₂O/ac)

*** Advanced:** P rate reduced from 100% to 50% of grain removal in 2018, grain removal was 90 lb P₂O₅/ac; K rate was 100 lb K₂O/ac, currently 75-lb + Surface-banded starter N replaced with V2 N application in 2018

- Yield gap = 14 to 59 bu/ac (average = 42 bu/ac)

LSD (0.05)

- Greatest yield = advanced fertilizer mgt. + intensive agronomics

- Moderate yield = advanced fertilizer mgt. or intensive agronomics

Agronomic management	Normal	Normal	Intensive	Intensive
Fertilizer management	Standard	Advanced	Standard	Advanced
----- year -----	----- grain yield (bu/ac) -----			
2014	159 c	192 ab	180 b	205 a
2015	163 d	183 c	197 b	222 a
2016	190 c	189 c	209 b	229 a
2017	169 c	192 b	171 c	224 a
2018	169 c	207 a	190 b	190 b
2019	192 b	206 a	204 a	204 a
6-year average	174 c	195 b	192 b	212 a

Agronomic management	Normal	Normal	Intensive	Intensive
Fertilizer management	Standard	Advanced	Standard	Advanced
Cost of treatments for partial budget analysis	----- \$/ac -----			
Seed (\$3.50/1,000 seeds)	126.00	126.00	143.50	143.50
P ₂ O ₅ pre-plant + application (\$0.54/lb P ₂ O ₅)	-	25.38	-	25.38
K ₂ O pre-plant + application (\$0.31/lb K ₂ O)	10.85	23.25	10.85	23.25
Urea at V2 + application (\$0.44/lb N)	17.60	17.60	17.60	17.60
Urea at V6 + application (\$0.44/lb N)	81.40	30.80	81.40	30.80
Urea at V12 + application (\$0.44/lb N)	-	30.80	-	30.80
Urea at VT + application (\$0.44/lb N)	-	19.80	-	19.80
Total	235.85	273.63	253.35	291.13

Cost of drying grain = \$0.045/point/bu

Value of grain = \$3.50/bu

- Greatest net return with advanced fertilizer mgt. + intensive agronomics in 4 of 6 years & advanced fertilizer mgt. + normal agronomics in 2 of 6 years
- On average, greatest net return with intensive agronomics & either level of fertilizer mgt.

LSD (0.05)

Agronomic management	Normal	Normal	Intensive	Intensive
Fertilizer management	Standard	Advanced	Standard	Advanced
----- year -----	----- partial net return (\$/ac) -----			
2014	264 c	309 b	359 a	367 a
2015	339 b	355 b	490 a	507 a
2016	425 b	371 c	522 a	534 a
2017	337 c	356 b	355 b	474 a
2018	319 bc	392 a	338 b	302 c
2019	389 b	489 a	382 b	348 c
6-year average	346 d	379 b	408 a	422 a

- **Agronomic NUE & corn N recovery efficiency were greatest with advanced fertilizer mgt. & either level of agronomic mgt. (due to greater yield than standard fertilizer mgt. with the same N rate)**

Agronomic management	Fertilizer management	6-year average	5-year average
		Agronomic NUE (increase in yield (bu/ac) per lb N/ac applied)	Corn N recovery efficiency (increase in N uptake (lb N/ac) per lb N/ac applied)
Normal	Standard	0.65 c	0.46 b
Normal	Advanced	0.76 ab	0.60 a
Intensive	Standard	0.74 b	0.50 b
Intensive	Advanced	0.80 a	0.61 a

LSD (0.05)

Summary

- **Experiments established with 10-year horizon**
 - Continue Waseca through 2020 (no AFREC funding for Becker in 2020)
 - Weather & crop response are dynamic over time
 - Long-term treatment effects on soil tests are expected at Waseca, had to move Becker site in 2018
 - Current yield levels are less than potential (weather)
 - Found a significant yield gap among treatments
 - >40 bu/ac in some years
 - UM recs did reduce yields some years
 - Profitability: intensive agronomics vs fertilizer management (N vs P)

Acknowledgement

- The authors thank the Minnesota Agricultural Fertilizer Research and Education Council (AFREC) and the Fluid Fertilizer Foundation for funding,
 - Scott Murrell and IPNI for expertise
 - Ward Lab for in-kind support of FFF
 - Corteva Pioneer agronomists for input and in-kind support.
 - Monsanto (DeKalb) for in-kind support

Contact info

Jeffrey Vetsch
Researcher

Southern Research and Outreach Center

jvetsch@umn.edu

Follow on Twitter @ jvetsch2

Dr. Jeffrey Coulter

Professor and Extension Corn Agronomist

Dept. Of Agronomy and Plant Genetics

jeffcoulter@umn.edu

Thank you!

© 2019 Regents of the University of Minnesota. All rights reserved.

The University of Minnesota is an equal opportunity educator and employer. In accordance with the Americans with Disabilities Act, this PowerPoint is available in alternative formats upon request. Direct requests to 612-624-1222.

