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FUTILITY

Some situations are just outside your capabilities unless your Clark Kent




Phosphorus (P) is an essential nutrient.

* Only nitrogen (N) surpasses this nutrient in global fertilizer need.



“Those that fail to learn from history are
doomed to repeat it.” -Winston Churchil
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Core ldeas

» History of P fertilization illuminates traditional soil P manage-
ment and needed changes.

« Recalibration of STP and P fertilizer recommendations are need-
ed to match increasing yield and rates of P uptake.

» Environmental concerns and diminishing P supply necessitate
improvement in P use efficiency.

» Placement and timing are improved through understanding of
variable rooting patterns.

» Enhanced efficiency P fertilizers can be effective if applied cor-
rectly.
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Relative yield = 800
vield relative to
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We know that these and
other crops have much
more yield potential than
we are currently at and,
thus, we predict continued
increase in yields.
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Why a Green Revolution?

* Soil Analysis Based Fertilization
* Pesticides

* Irrigation

* Breeding & Genetics

* Mechanization

* Technology

* Transportation

* Research and Education



Plants growing natively don’t require fertilizer
necause they grow relatively slowly and have
evolved to require relatively less nutrients.




Crops have been bred to grow relatively rapidly
and to have relatively high nutrient requirements.



The steady
Increases in yields
also requires
continual increases
In nutrient needs.
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This is the amount of
phosphorus in various crops.
These values remain
approximately constant at low
and high yields.




As yields increase, the management
techniques for nutrients, including
phosphorus, may no longer be sufficient.
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Untreated control
with the symbol M
never fertilized (O
nitrogen and 0
phosphorus) has
base yields that the
soil system can
support without
fertilizer, with a slight
downward trend.
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Fertilized with N & P
with symbol - @
fertilized prior to the
start of the study and
receiving fertilizer
(179 N & 20 P) has
elevated yields
enhanced by
fertilization, with a
slight upward trend.
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Nitrogen only fertilization
with the symbol ©fertilized
prior to the start of the study
and receiving fertilizer (179 N
but no phosphorus) has
elevated yields enhanced by
fertilization at the beginning
of the trial, but with a
significant downward trend.
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Residual P does
impact future
year crops, but its
supply is not
endless.
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Notice that it
takes a few years
before problems
become serious.
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Also notice the
scatter in the
data. For
example, see the
last two years of
the trial with
large differences.



Cropping systems are outpacing fertilizer
recommendations.
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Table 2. Phosphorus uptake (International Plant Nutrition Institute, 2014), average crop yields (Lazicki et al., 2016; USDA-NASS, 2019, averaged
across 2007-2016), P removal at average yields (USDA-NASS, 2019), Ieachoncentratlons {Brysnn etal., 2014), and P concentrations in the harvested
portion (Lardy and Schafer 2014- LISDA-ARS _2019- LISDA_NR(CS, 2019) for eight kev spnecic

. Removal I Leaves Harvested portion
kg P Mg’ kg P ha! % %
0.56 26 0.20-0.50 0.04
2.70 27 0.25-0.50 0.21
2.54 21 0.10-0.18 0.10

Potato
Maize
Rice
Wheat

0.20-0.50 042
0.25-0.50 0.70

3.83 12
6.48 20
0.45 29

Soybean

0.45-1.10 0.24
0.35-0.50 0.03
0.10-0.40 0.01

Sugar beet
0.14
0.04

Onion
Apple
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Fig. 3. Estimated cumulative P uptake for maize as a function of grow-
ing degree days (GDDc) for maize growth with vegetative (V) and
reproductive (R) stages shown for “modern hybrids” (adapted from
Bender et al., 2013a) and “older hybrids” (adapted from Ritchie et al.,
1997).



Meeting Increased Phosphorus Demands

Exceptional Yields Require Exceptional Management



*Spatially Precise Technologies
*\VVariable Root Access to Phosphorus
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Impact uptake of
nutrients, such
as P, with limited
mobility in the
soll.

Iwama, K. 2008. Physiology of the potato: new insights into root system and repercussions for crop management. Potato Res. 51:333-353. doi.org/10.1007/s11540-008-9120-3



We can't effectively manage nutrients if
we don't have a basic understanding
of their behavior in the soll.



Opposite of nitrogen (N), phosphorus (P) chemistry
is dominated mostly by its very poor solubility.



“Don’t eat rocks.”

Plants can't effectively take
up nutrients in solid form




Plants “drink” their nutrients

* Nutrients need to be dissolved in soil solution.



Phosphorus in Soll

* lons [phosphate ion (PO,3)] are dissolved in soil solution.

1
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Phosphorus in Soll

* lons can react with other oppositely charged ions and form
precipitates, which don't readily leach or interact with the CEC.

Calcium phosphate

0
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Ho-P~0"| |Ca

. OH L .
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Truog, Emil. 1947. The Liming of Soils. In:
USDA Yearbook of Agriculture 1943-1947. pp.
G) 0 () 569-570



ihood of Nutrient Deficiency as a Function of ¢

Decreased Mineralization Volatilization (Ammonia)
& Decomposition Nitrogen '

Nitrogen
Sulfur Poor Solubility

Phosphorus
Zinc
Poor Solubility Manganese
Phosphorus Iron
Copper
Boron

Molybdenum

Competition (Leaching)
Potassium

Hopkins, B.G. and N.C. Hansen. 20xx. Adapting conventions to improve phospha
yield environments. Journal of Environmental Quality. (submitted in March 20
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Phosphorus is highly reactive
INn forming precipitates



ecreased Mineralization
& Decomposition
Nitrogen
Sulfur
Molybdenum

Poor Solubility




Volatilization (Ammoniz
Nitrogen

Poor Solubility
Phosphorus

Manganese
Iron
Copper
Boron




Most P IS In solid form



Most P iIs In solid form
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Most P is In solid form
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Is It a problem iIf most P is Iin a solid form?
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Equilibrium Chemistry
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Fertilizer P
typically
dissolves
rapidly, but most
of It precipitates
(fixation).

The Phosphorus Cycle
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Phosphorus in the soil

Non Labile P Labile P

inorganic low

_________________________ < | inorganic | +—*
organic

organic

Soluble P (<1%)

Soil Total Phosphorus

*Determined in the laboratory by a harsh chemical extraction

*Ranges 200-5000 mg/kg Average ~ 500 mg/kg
(~2,000 lbs/ac)




Phosphorus in the soll

Non Labile P Labile P

inorganic low

_________________________ < | inorganic | +—*
organic

organic

Soluble P (<1%)

Soil Soluble Phosphorus

* Plants take P from solution

* Average soil solution concentrati
(<1 1b/ac)



50 ppm

500 ppm on
calcite after

Freeman and Rowell, 1981. J. Soil Sci. 32:75-84
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IS
precipitated
fertilizer P
“lost”?
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How Does Equilibrium Chemistry Work?

Plants take up P Soil solution P ‘Rate of P Rate of P dissolution
concentration mineralization decreases once
decreases (dissolution) from equilibrium is

minerals increases reached



What determines if there is a P deficiency?

Plants take up P Soil solution P Rate of P Rate of P
concentration mineralization dissolution

decreases (dissolution) decreases once

from minerals equilibrium is

increases reached



Demand and Supply

Rate of P
mineralization
(dissolution)
from minerals
Increases

Rate of P
dissolution
decreases once
equilibrium is
reached

Plants take up P Soil solution P
concentration
decreases



Stunted plants with slower row closure on this eroded hillside
with P deficient calcareous soll.
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Photo taken by B.G. Hopkins of field near St. Anthony, ID



e 4RS

* The Right
 Rate
* Timing
* Placement
e Source



Modernizing Proven Practices

* Soil Test Phosphorus Critical Levels
* Foundational Management Practices



Phosphorus Best Management Practices

» Select appropriate solid and/or liquid sources with high availability of P to plants.
* Account for degradation rates of crop residues and animal wastes, especially in cool soils.

* Account for the possible value, synergy, and/or toxicity of accompanying nutrients and other chemicals in the fertilizer
blend.

* Avoid unwanted precipitation or caking or clumping during handling.
» Correct and/or account for soil pH and other chemical properties of soil and their interaction with fertilizers.

» Use appropriate P fertilizer rates based on scientific and/or on-farm studies (P response and/or omission plots) specific to
the P source, soil, and cropping system.

» Use tissue analysis to evaluate fertilizer effectiveness with, if needed, rescue applications of P appropriate for the cropping
system, followed by adjustments in preplant fertilization in future years.

* Evaluate root growth and vascular system health to determine the effectiveness of this aspect of the P supply system for
the plant.
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* Good Soll Sample
* Accurate Soll Test



Solls in the deficient category are increasing in percentage

11l

21-25 26-30 31-35 36-40 41-45 46-50 >50

Change of percentage of soil samples, %

5-20
Bray P1, mg kg'!

IPNI Soil Test Summary



* Proper Interpretation (Tables from Scientific Studies)



* Soll testing
IS proven,
although
not perfect
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https://crops.extension.iastate.edu/cropnews/2008/09/making-fertilization-
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e P fertilizer

was
generally _ 125
profitable § 100
when soll @ 75
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low". : 25

8 0

% 25

= -50

-100 ——

0 10 20 30 40 50 60 70 O 10 20 30 40 50 60 70
SOIL-TEST P (Bray-1, ppm)



« However,

the o 125
prediction § 100
was not R E
perfect In 2.. 50
EVEry case. =2 o,
=
g -25
= -50
7

0 10 20 30 40 50 60 70 O 10 20 30 40 50 60 70
SOIL-TEST P (Bray-1, ppm)



e P fertilizer
was not
needed
when soll
test was at
the
“‘optimum”
level.

RETURNS TO 46 Ib P,0, ($/acre)

0 10 20 30 40 50 60 70 O 10 20 30 40 50 60 70
SOIL-TEST P (Bray-1, ppm)



e P fertilizer
had a
negative
return when
the soll test

was “hig
or ‘very
high”.

RETURNS TO 46 Ib PO, ($/acre)

VH Soil-Test Classes

0 10 20 30 40 50 60 70 O 10 20 30 40 50 60 70
SOIL-TEST P (Bray-1, ppm)




Rate / Velocidad

e But, overall,
this is a good
tool that
would be
foolish to
dismiss.

RETURNS TO 46 Ib PO, ($/acre)
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0 10 20 30 40 50 60 70 O 10 20 30 40 50 60 70
SOIL-TEST P (Bray-1, ppm)



* The
Interpretation
shifts based
on the value
of the crop
and price of
fertilizer P.
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RETURNS TO 46 Ib P,0, ($/acre)
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Soil Test Methods vary in value, but common methods
are generally effective if used on intended soills.

10000
2120 H Soil 1 MmSoil2 mSoil3
1560
1100
1000
£
S 100 84 79
a” 30 > ’g 40 35
21
14
10 I I
1.2
1 — - —
Total P Dissolved P Mehlich3 -P Bray P1-P Olsen Bicarb - P
Hopkins, B.G. unpublished data—example 0T P CONCE o s

non-calcareous soils from the Midwestern region of the USA



» Sampling done properly (account for differences In
spatial and depth differences, avoid contamination,
etc.)



» Good analysis by a competent lab using a good
method.



* Proper interpretive scale needs to be used.



Ok, how do we manage?

*4Rs
* Right Rate
* Right Timing



* Fall vs. Spring?
 Fertigation or Foliar?



In general, P timing Is very different than
N & K fertilizer due to chemistry.

* Apply pre-plant so it can be placed in the root zone.



P Use Efficiency (PUE) in decreasing order

* Pre-Plant or At-Planting
e concentrated bands in root zone (~25-35% uptake in 1%t year)
* broadcast and incorporated (~5-10%)
* In-Season (~1-8%)
 surface concentrated bands
 (although drip fertigation can be higher)

* injection into overhead irrigation (fertigation),
* foliar sprays, and
 surface broadcast not-incorporated



Ok, how do we manage?

*4Rs

* Right Rate

* Right Timing
 Right Placement




* Incorporate into the soll is better than applied to surface
(or use a mobile form of P fertilizer)



* Place In a concentrated band near the roots increases 1St
year P uptake by more than double.



Majority of P taken up from soill
(even when foliarly applied)



Broadcast P needs to be
Incorporated Into the soll



* Not as effective, but may be needed as a “rescue”.



* More likely to be efficient if surface soil Is moist and there
are surface roots present.



* Need to understand uptake patterns
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However, ~90% of the fertilizer P Is taken
up by plants after 10 years.

Johnston, A.E., P.R. Poulton, P.E. Fixen, and D. Curtin. 2014. Phosphorus: its efficient use in agriculture. Adv. Agron. 123:177-228. doi.org/10.1016/B978-0-12-
420225-2.00005-4

Syers J.K., A.E. Johnston, and D. Curtin. 2008. FAO fertilizer and plant nutrition bulletin 18. Efficiency of soil and fertilizer phosphorus use. Food and
Agriculture Organization of the United Nations, Rome. http://www.fao.org/3/a1595e/a1595e00.htm (Accessed February 16, 2019).



*4Rs

* Right Rate
 Right Timing

* Right Placement
* Right Source




Right Source



* Generally effective

» Especially the ammonium phosphates (dry vs. liquid)
* Dry
* 11-52-0
* 18-46-0
e Liquid
» 10-34-0
* 11-37-0



Forms

» Waste products (manure, biosolids, etc.)?
* Coated, slow release products

* Polymer (AVA
* Struvite

* Organic acid basec
* Acids
* Nano-particles
* Steric P

e Other




Additional yield increase

due to AVAIL (%)

N & O

o

~500 field sites
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Hopkins, B.G., K.J.
Fernelius, N.C.
Hansen, and D.L.
Eggett. 2018. AVAIL
phosphorus fertilizer
enhancer: Meta-
analysis of 503 field
evaluations. Agron. J.
110: 389-398.
DOI:10.2134/agronj20
17.07.0385
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Additional yield increase

due to AVAIL (%)

N & O
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~- At moderately high STP there was no response.
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Additional yield increase

due to AVAIL (%)

N & O

o
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- At excessively high STP there was sometimes a
| negative response. (imbalance with other
nutrients?)

IPNI STP categories




Additional yield increase

due to AVAIL (%)

N & O

o

1 2 3 4 5 6 7 8 9 10

Some species (potato, etc.) still responded at

excessively high STP.
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14

IPNI STP categories




AVAIL significantly increased crop yields when used under
conditions where a P response would be expected. The
average yield increase under such conditions was 4.5%

Additional yield increase

due to AVAIL (%)

All Data

Low STP,
Extreme pH,
Low P rate



* Relatively poor use efficiency compared with other crops
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Potato vs corn roots at 56 days
after planting
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Organic Acids



Humic Acid - Russet Burbank potato

* 3 years « Ammonium polyphosphate (10-34-0)
e calcareous soil e 3 inches to the side of seed
* medium soil test P e with and without Humic Acid (HA)
e 1:10 ratio of humic acid to 10-34-0
e control

e 15gal 10-34-0+ 1.5 gal HA
* 30gal 10-34-0 + 3.0 gal HA
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2000
0 120+HA
B 2000 327 b 333 338 347 364
W 2001 337 354 401 374 393
02002 394 431 444 438 446
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Bicarbonate Extractable Phosphorus Concentrations by Depth

0-6in.

6-12in.

12-24 in.

24-36in.

36-48 in.!

Bicarbonate P, ppm

-2 0 2 8 10
36-48 in. 24-36 in. 12-24 in. 6-12 in. 0-6 in.
CB-P 0.2 0.4 2.8 3.4 5.7
W APP -0.3 0.1 -0.2 0.3 8.1




Relative Yield Increase

20%

15%
10%
5% P—
0%
potato dry bean sugarbeet silage corn wheat
P 12% 10% 15% 20% 7%
M Yield 10% 5% 4% 9% 8%




Hopkins and Hansen, 2019
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Struvite
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Negative control
Positive control (MAP)
M CG low ratio (<50%)
B CG high ratio (50-99%)
HCG 100%
E ab d
C
c I I I

US No.1

a a
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c I

Total Yield



Our study was theoretically ideal for the
opportunity for a potato yield increase with
struvite application for the following reasons:

1) a high concentration of P in the planted seed pieces,

2) a variety with a relatively high probability of P response was used,

3) the soil test P concentrations were low-to-moderate for potato,

4) the soils had an alkaline pH,

5) the soils were calcareous with high limestone concentrations,

6) the form of struvite used was granular, not powdered, and scientifically proven to be effective,
7) struvite alone and a high ratio of struvite to traditional fertilizer were included as treatments,
8) P rates were based on research-based recommendations for the variety and conditions



We do have effective Enhanced Efficiency
Phosphorus Fertilizers, but . . .




* Does it fit the soil type?

* Organic matter?
* pH?
* Soil Test P?

* How responsive is the crop?
* eg. potato vs. corn

e Reduce the rate
* Enough is enough, adding more doesn’t add more yield



* We need fertilizer, although we can often cut back or not apply.



* Apply the correct rate (soll test) with optimized timing,
placement, and source.



* Enhanced Efficiency P Fertilizers generally only work at low
STP and reduced rates (and at a reasonable cost).



* We need fertilizer, although we can often cut back or not apply.

* We should not be complicit in the long-term destruction of soll
fertility.

* Apply the correct rate (soll test) with optimized timing,
placement, and source.

 Enhanced Efficiency P Fertilizers generally only work at
low STP and reduced rates (and at a reasonable cost).




It doesn't matter how many resources you have

if you don't know how to use them, they will never be enough
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