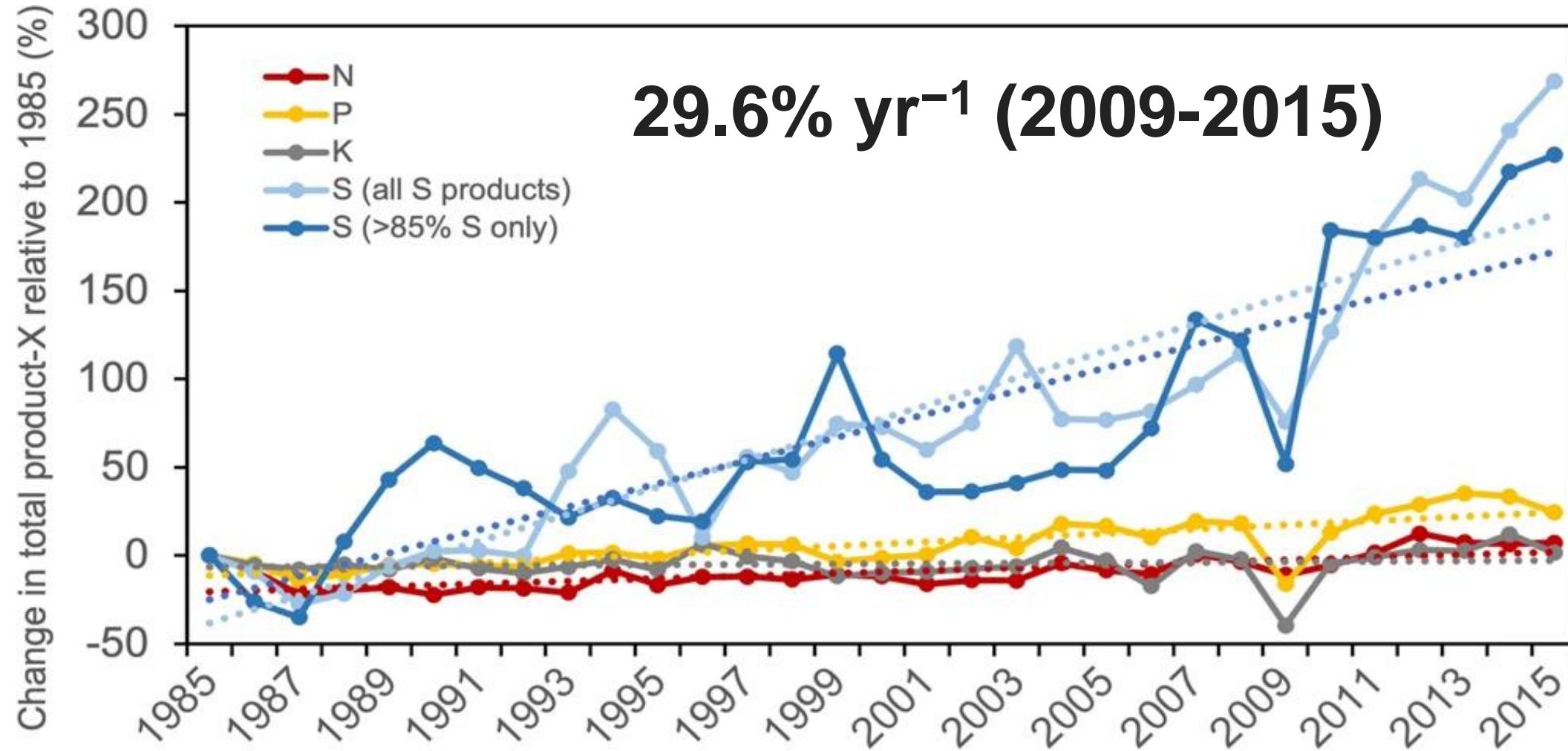


The Sulfur Story From Fertilizer to Yield

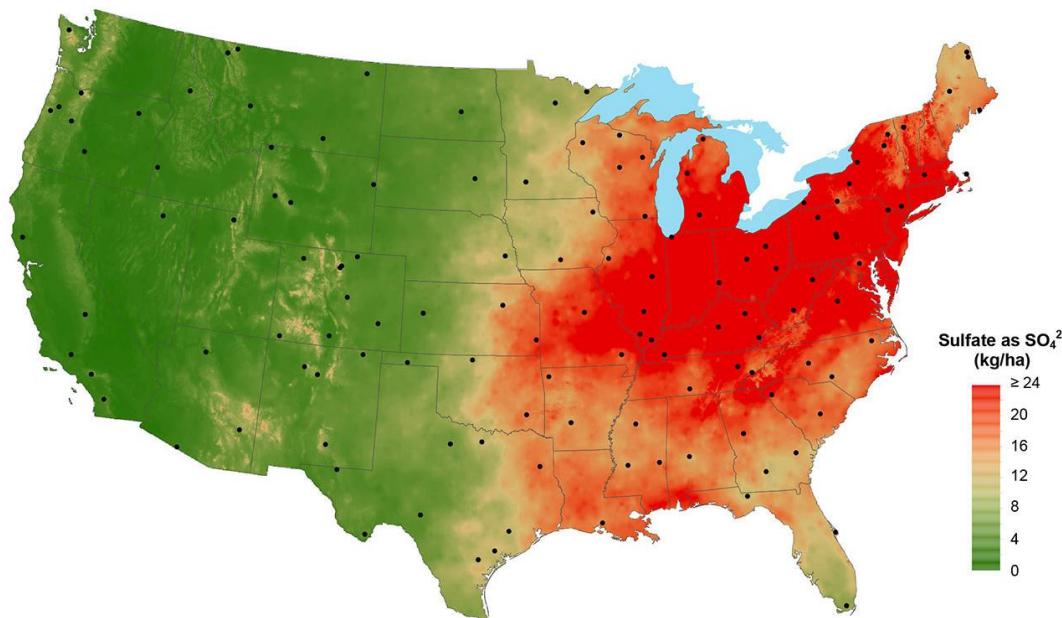
Marcos Loman & Fred Below

Crop Physiology Laboratory


Department of Crop Science

University of Illinois, Urbana-Champaign

Presentation Outline


- Why sulfur?
- Sulfur fertilization on soybean.
- Sulfur fertilization on corn.
- Sulfur requirement: corn vs soybean.
- When to fertilize with sulfur in IL.

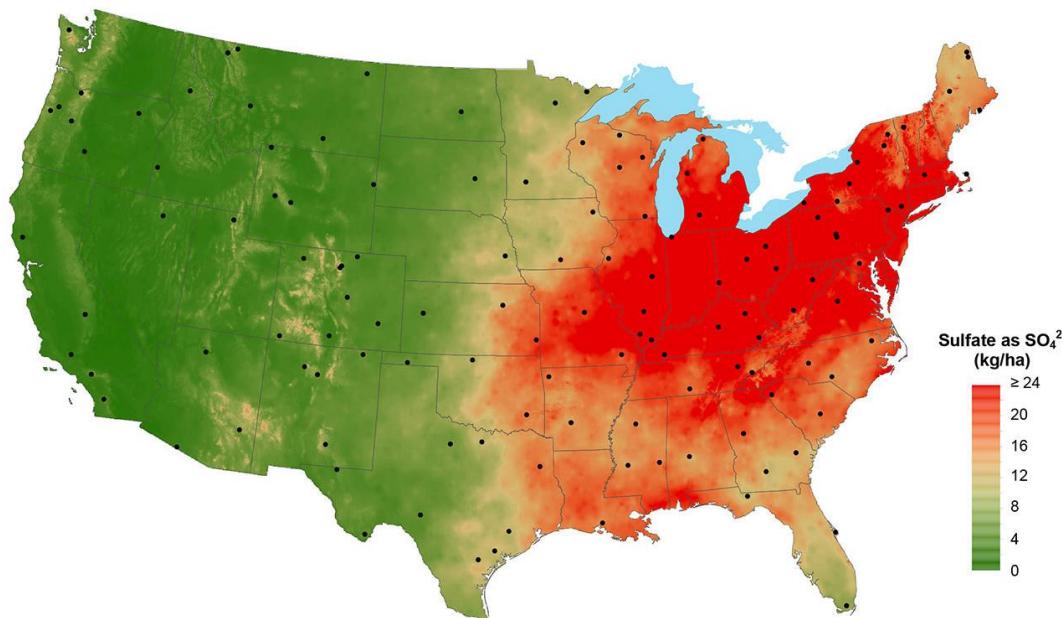
% Change in N, P, K, and S Products Relative to 1985



Why Sulfur?

- Decreased atmospheric sulfate deposition

1985 = > 8 lbs S/A



2021 = ~2 lbs S/A

Why Sulfur?

- Decreased atmospheric sulfate deposition

1985 = > 8 lbs S/A

“During the 1980s, it was estimated that sulfur dioxide damage to agriculture in 11 European countries was causing a loss of \$500 million per year” (Bell, 1984).

Why Sulfur?

- Decreased atmospheric sulfate deposition.
- Use of higher purity phosphate fertilizers that do not contain or contain little S.
- Increasing crop yield (greater S uptake and removal).
- Depletion of soil S reserves?

Reports of S deficiency are becoming more frequent and have been reported in the US Midwest (Sawyer et al., 2011; Camberato and Casteel, 2017)

In-season Applications of Sulfur Sources in Different Methods on Soybean

Dr. Vitor Favoretto & Dr. Fred Below

FFF Soybean S Treatment List

Trt #	Sulfur Source	Placement
1	Untreated control (UTC)	-
2	Ammonium sulfate (AMS)	Topdress
3		
4		
5		
6		
7		
8		

[†]All sources applied at 20 lbs.ac⁻¹ of sulfur at beginning flowering (R1)

FFF Soybean S Treatment List

Trt #	Sulfur Source	Placement
1	Untreated control (UTC)	-
2	Ammonium sulfate (AMS)	Topdress
3	AMS	Mid-row surface band
4		
5	Ammonium thiosulfate (ATS)	Mid-row surface band
6		
7	Potassium thiosulfate (KTS)	Mid-row surface band
8		

[†]All sources applied at 20 lbs.ac⁻¹ of sulfur at beginning flowering (R1)

FFF Soybean S Treatment List

Trt #	Sulfur Source	Placement
1	Untreated control (UTC)	-
2	Ammonium sulfate (AMS)	Topdress
3	AMS	Mid-row surface band
4	AMS	"DRY-DROP"
5	Ammonium thiosulfate (ATS)	Mid-row surface band
6	ATS	Y-DROP
7	Potassium thiosulfate (KTS)	Mid-row surface band
8	KTS	Y-DROP

[†]All sources applied at 20 lbs.ac⁻¹ of sulfur at beginning flowering (R1)

Dry-Drop (Dry Y-Drop)

FFF Soybean S Treatment List

Trt #	Sulfur Source	Placement
1	Untreated control (UTC)	-
2	Ammonium sulfate (AMS)	Topdress
3	AMS	Mid-row surface band
4	AMS	"DRY-DROP"
5	Ammonium thiosulfate (ATS)	Mid-row surface band
6	ATS	Y-DROP
7	Potassium thiosulfate (KTS)	Mid-row surface band
8	KTS	Y-DROP

[†]All sources applied at 20 lbs.ac⁻¹ of sulfur at beginning flowering (R1)

Trial Information and Soil Test Results

- Location: Champaign, IL (2021)
- Planting date: May 14th
- Variety: GH3132E3
- Population: 140,000 plants acre⁻¹
- Row spacing: 30 inches
- Sidedress application: July 6th (R1 growth stage)

SOM	pH	CEC	NO ₃	NH ₄	P [§]	K	Ca	Mg	S	Zn	Mn	Fe	Cu	B
%	unit	meq/100g					ppm							
3.9	6.3	20.1	5.7	3.5	30	121	2623	507	8	1.2	27	127	1.9	0.7

FFF Soybean S Grain Yield

Sulfur Source	Placement	Grain Yield bushels/A
UTC	-	83.4
AMS	Topdress	
"	Mid-row surface band	
"	"DRY-DROP"	
ATS	Mid-row surface band	
"	Y-DROP	
KTS	Mid-row surface band	
"	Y-DROP	
LSD ($\alpha=0.05$)		NS

[†]All sources applied at 20 lbs.ac⁻¹ of sulfur at beginning flowering (R1)

FFF Soybean S Grain Yield

Sulfur Source	Placement	Grain Yield
		bushels/A
UTC	-	83.4 Δ UTC
AMS	Topdress	81.0 -2.4
"	Mid-row surface band	
"	"DRY-DROP"	
ATS	Mid-row surface band	
"	Y-DROP	
KTS	Mid-row surface band	
"	Y-DROP	
LSD ($\alpha=0.05$)		NS

[†]All sources applied at 20 lbs.ac⁻¹ of sulfur at beginning flowering (R1)

FFF Soybean S Grain Yield

Sulfur Source	Placement	Grain Yield	
			bushels/A
UTC	-	83.4	Δ UTC
AMS	Topdress	81.0	
"	Mid-row surface band	82.2	-1.2
"	"DRY-DROP"		
ATS	Mid-row surface band	80.8	-2.6
"	Y-DROP		
KTS	Mid-row surface band	81.7	-1.7
"	Y-DROP		
	LSD ($\alpha=0.05$)		NS

[†]All sources applied at 20 lbs.ac⁻¹ of sulfur at beginning flowering (R1)

FFF Soybean S Grain Yield

Sulfur Source	Placement	Grain Yield	
			bushels/A
UTC	-	83.4	Δ UTC
AMS	Topdress	81.0	
"	Mid-row surface band	82.2	
"	"DRY-DROP"	82.5	-0.9
ATS	Mid-row surface band	80.8	
"	Y-DROP	83.5	+0.1
KTS	Mid-row surface band	81.7	
"	Y-DROP	80.0	-3.4
LSD ($\alpha=0.05$)		NS	

[†]All sources applied at 20 lbs.ac⁻¹ of sulfur at beginning flowering (R1)

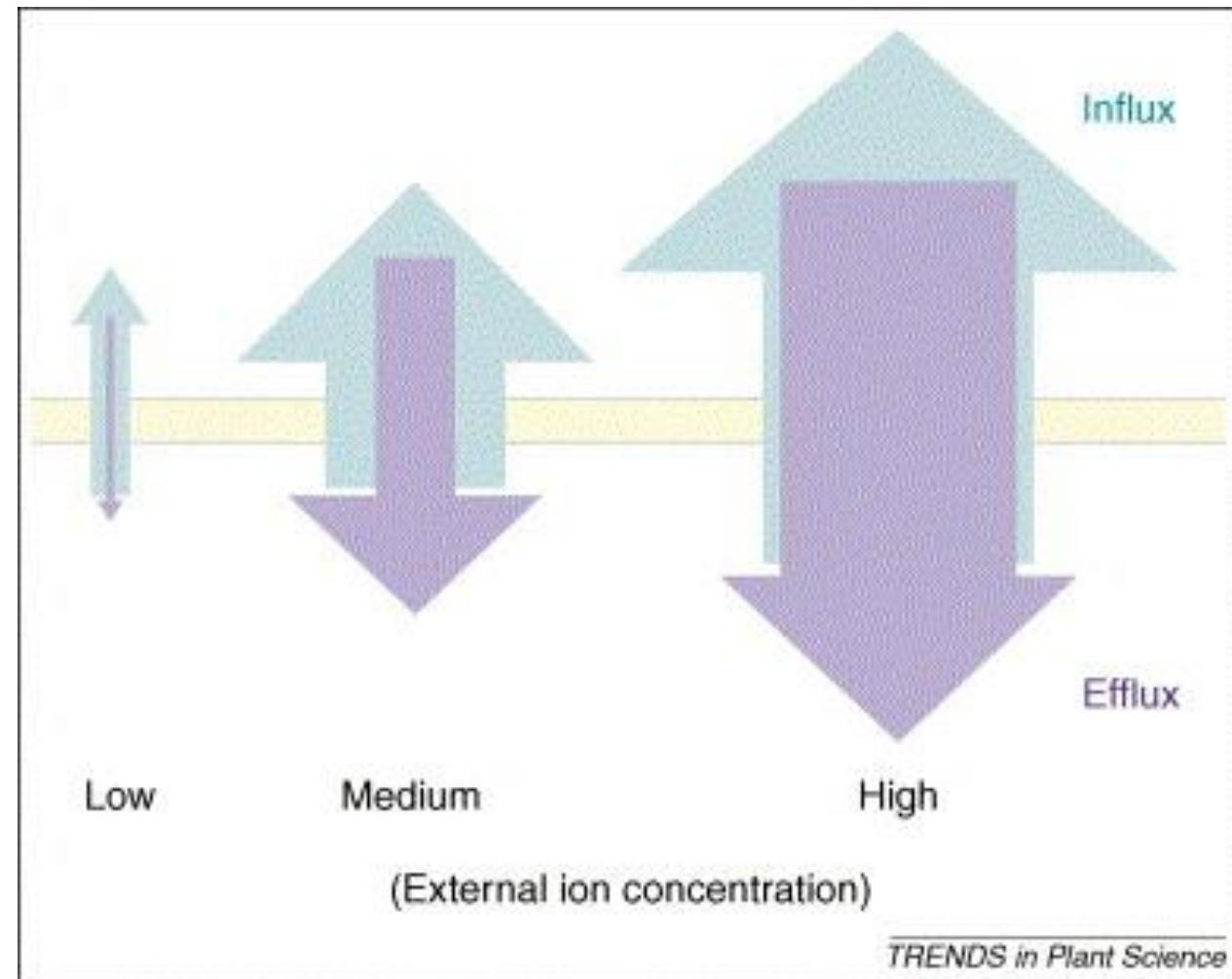
FFF Soybean S Grain Yield

Sulfur Source	Placement	Grain Yield bushels/A	Δ
UTC	-	83.4	UTC
AMS	Topdress	81.0	-2.4
"	Mid-row surface band	82.2	-1.2
"	"DRY-DROP"	82.5	-0.9
ATS	Mid-row surface band	80.8	-2.6
"	Y-DROP	83.5	+0.1
KTS	Mid-row surface band	81.7	-1.7
"	Y-DROP	80.0	-3.4
LSD ($\alpha=0.05$)		NS	

[†]All sources applied at 20 lbs.ac⁻¹ of sulfur at beginning flowering (R1)

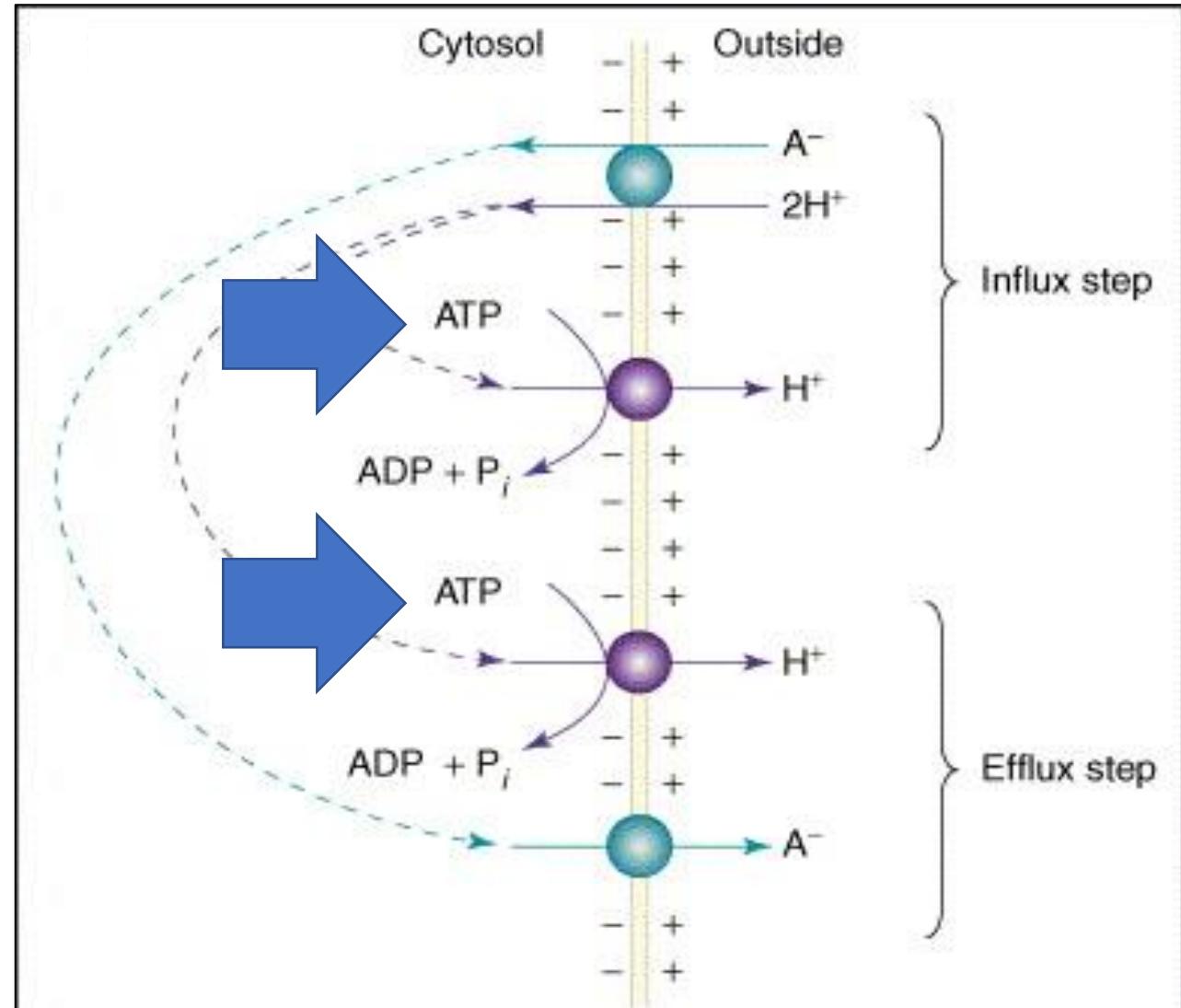
FFF Soybean S Grain Yield

Sulfur Source	Placement	Grain Yield bushels/A
UTC	-	83.4
AMS	Topdress	81.0
"	"DRY-DROP"	82.2
ATS	Mid-row surface band	80.8
"	Y-DROP	83.5
KTS	Mid-row surface band	81.7
"	Y-DROP	80.0
LSD ($\alpha=0.05$)		NS

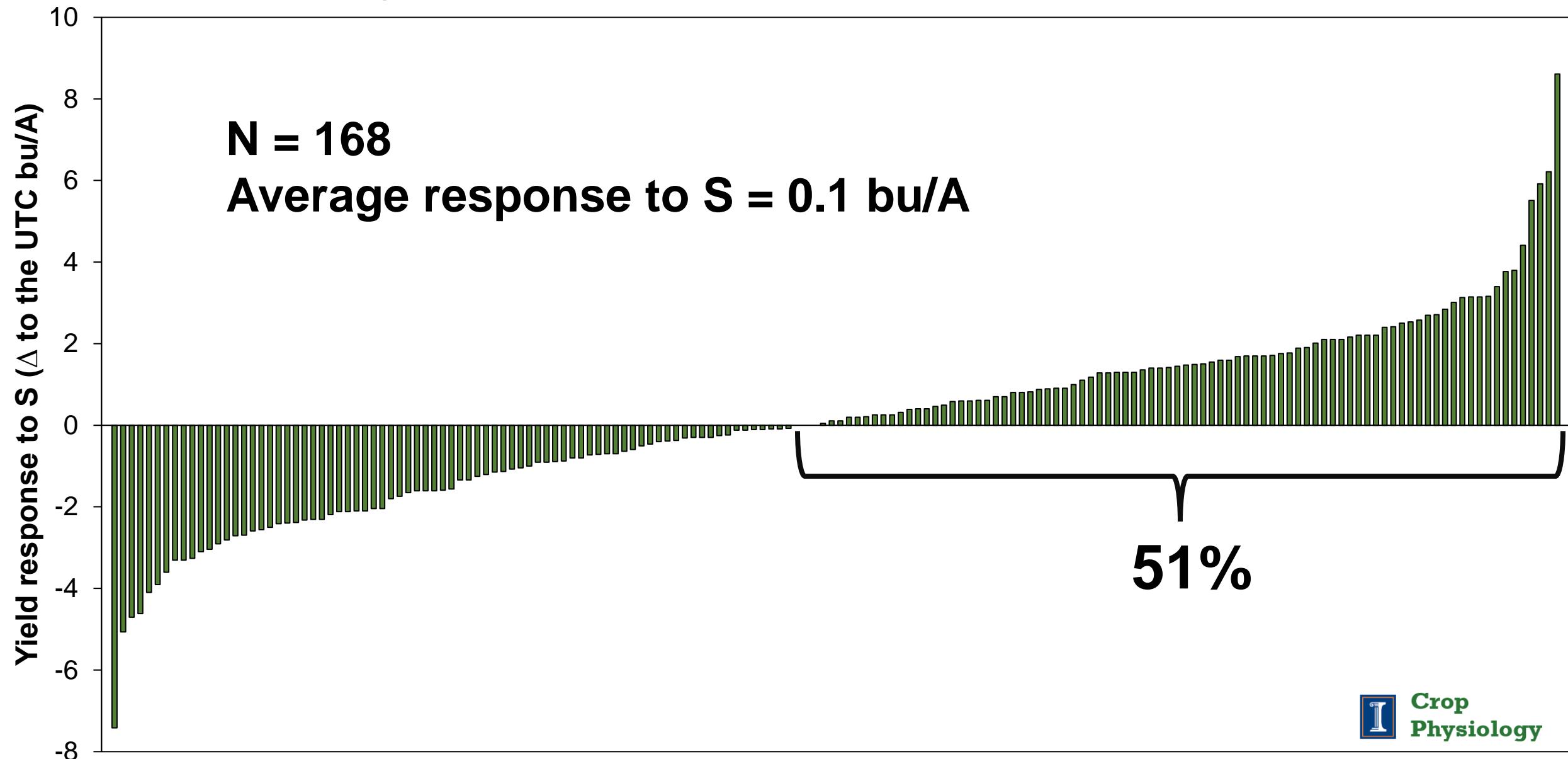

Yield tended to decrease....

Why?

[†]All sources applied at 20 lbs.ac⁻¹ of sulfur at beginning flowering (R1)


Futile Cycling of Sulfur?

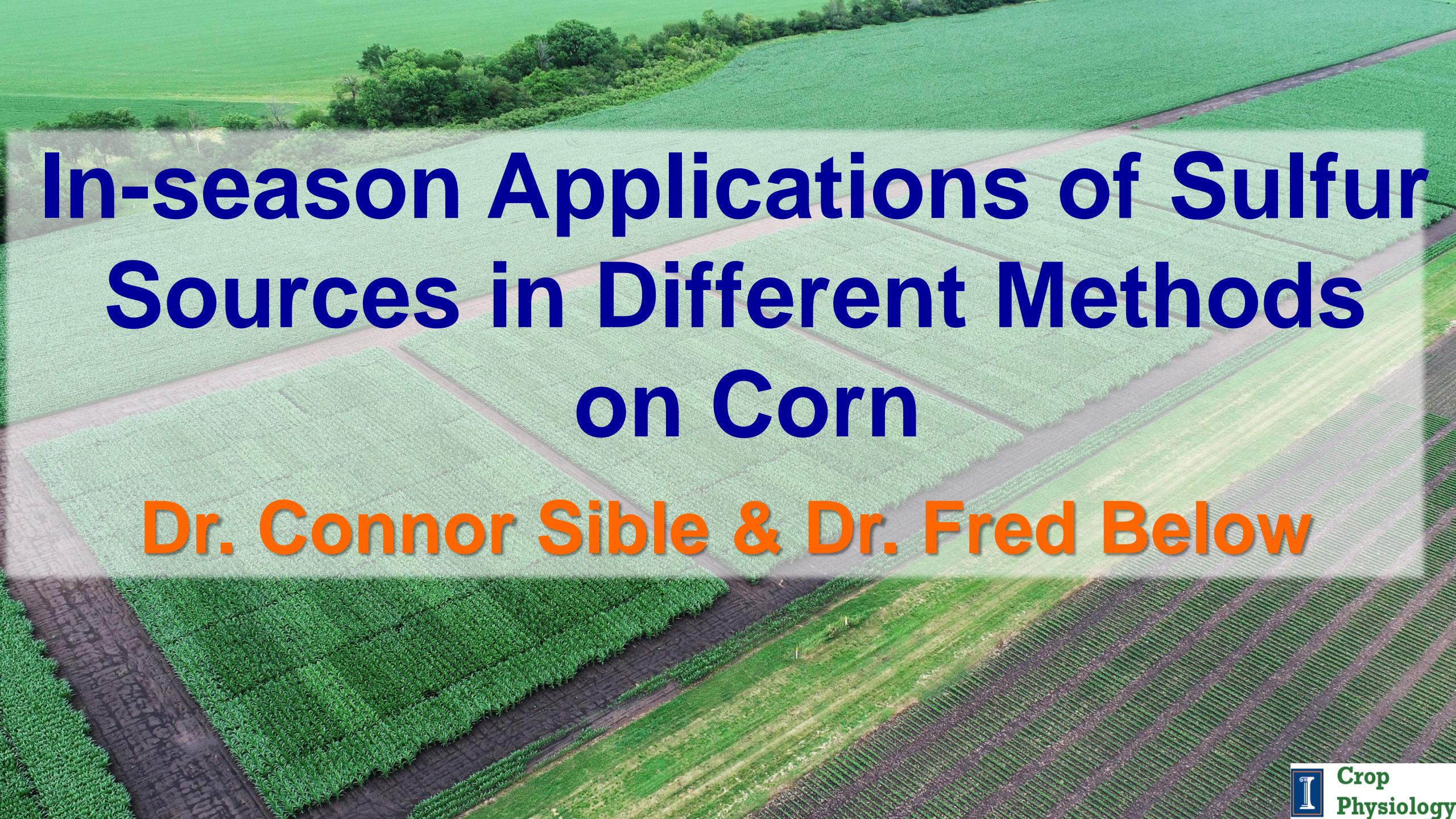
- Root cells are not equipped to prevent an uptake of excess sulfate (Rennenberg, 1984)
- High rates of apparently “futile” cycling of SO_4^{2-} across the plasma membrane of root cells occur when these ions are present at **high concentrations** in the rhizosphere solution (Britto and Kronzucker, 2006).



Futile Cycling of Sulfur?

The **energy costs** associated with the "futile" cycling are believed to constitute a significant portion of the total respiratory energy expenditure of the root

CPL Soybean Yield Response to S

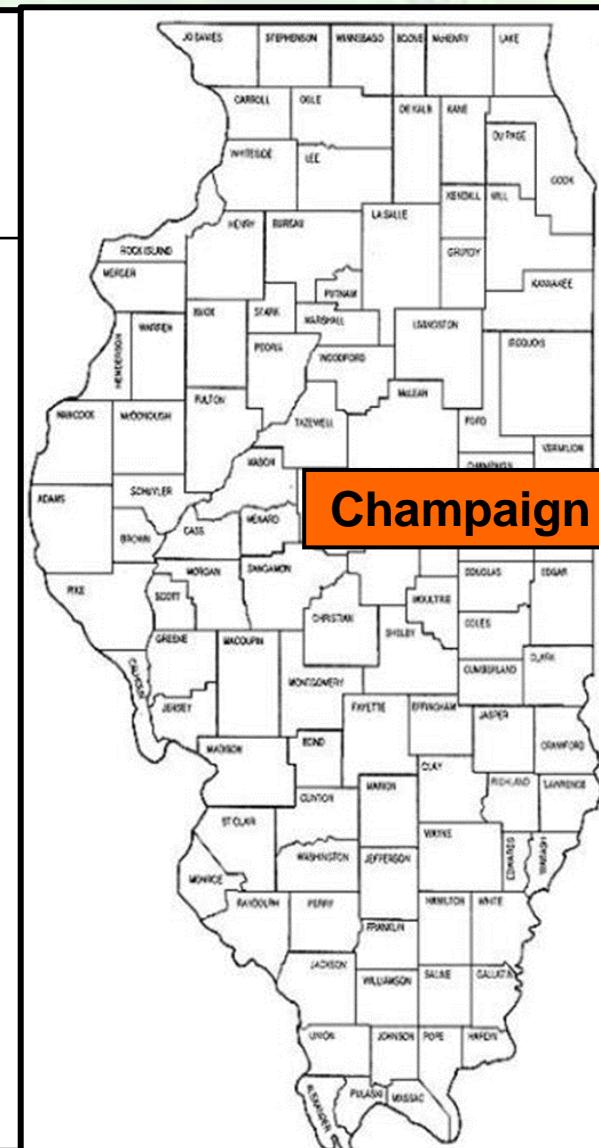

Soybean Yield Response to S

N = 168

Average response to S = 0.1 bu/A

What about Corn?

51%



In-season Applications of Sulfur Sources in Different Methods on Corn

Dr. Connor Sible & Dr. Fred Below

2022 Treatment List and Illinois Location

Treatment	Product, Application [†]	Nutrients Supplied
Untreated Control	-	-
Liquid Sidedress	UAN-32, Y-Drop (V5)	60 lbs N
Liquid Sidedress	ATS + UAN-32, Y-Drop (V5)	60 lbs N, 20 lbs S
Dry Topdress	AMS + Urea (V5)	60 lbs N, 20 lbs S

[†] All treatments applied at the V5 growth stage. UAN-32; urea ammonium nitrate (32-0-0), AMS; ammonium sulfate (21-0-0-24S), ATS, ammonium thiosulfate (12-0-0-26S). Total N rate for all treatments = 220 lbs. N/A

Trial Information at Champaign, Illinois

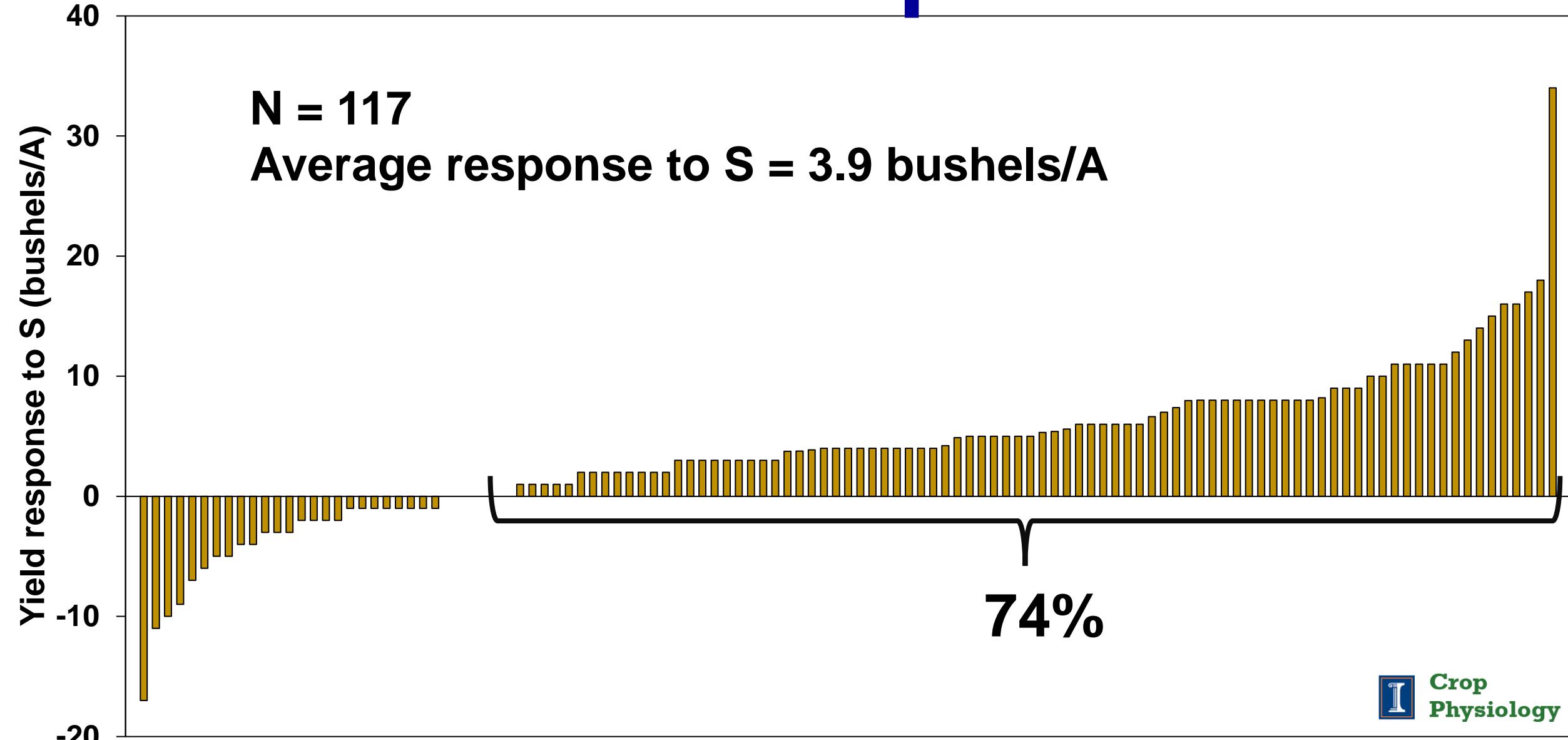
Soil Test

OM [†]	CEC	pH	P ^{††}	K	Ca	Mg	S	Zn	Mn	Fe	Cu	B
%	meq/100g	unit					ppm					
3.9	21.1	6.4	22	103	2858	500	8	2	54	116	1.8	0.7

[†] OM, Organic Matter; CEC, Cation Exchange Capacity

^{††} Mehlich-3 extraction

- Preplant N → 160 lbs N as UAN-32
- Planting Rate → 34,000 plants/A
- Row Spacing → 30 inches
- Sidedress Application → June 15th (V5 Growth Stage)


Grain Yield and Yield Components

Treatment Description [†]	Grain Yield
	bushels per acre
Untreated Control	252 Δ UTC
Liquid Sidedress (UAN)	+6
Liquid Sidedress (UAN/ATS)	+11
Dry Topdress (Urea/AMS)	+4
LSD ($\alpha = 0.1$)	NS ($p = 0.11$)

† All treatments applied at the V5 growth stage. UAN-32; urea ammonium nitrate (32-0-0), AMS; ammonium sulfate (21-0-0-24S), ATS, ammonium thiosulfate (12-0-0-26S)

* Statistically different from the untreated control using a paired t-test at $\alpha = 0.1$

Corn Yield Response to S

15 site-year and six replications average yield response to sulfur containing fertilizer. Champaign, IL (2023)

Sulfur on Soybean vs Corn

Sulfur on Soybean vs Corn

IL Corn & Soybean Average Yield

**Illinois record average corn
yield is 215 bushels/A in
2022**

**Illinois record average
soybean yield is 65
bushels/A in 2021**

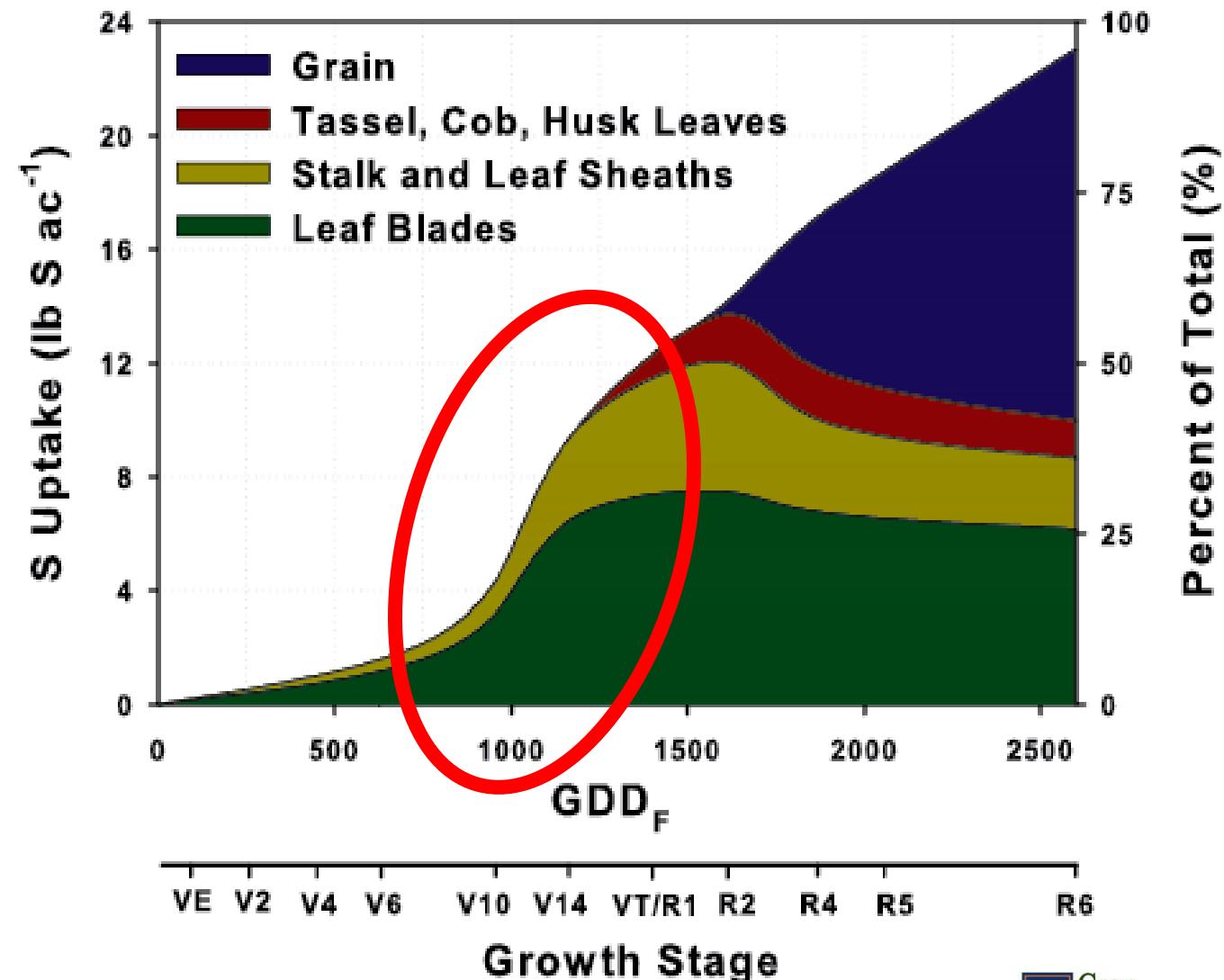
Corn & Soybean Sulfur Needs

	Corn (215 bu/A)	Soybean (65 bu/A)
Need	lbs/A	
Uptake	22	18
Removal	12	11

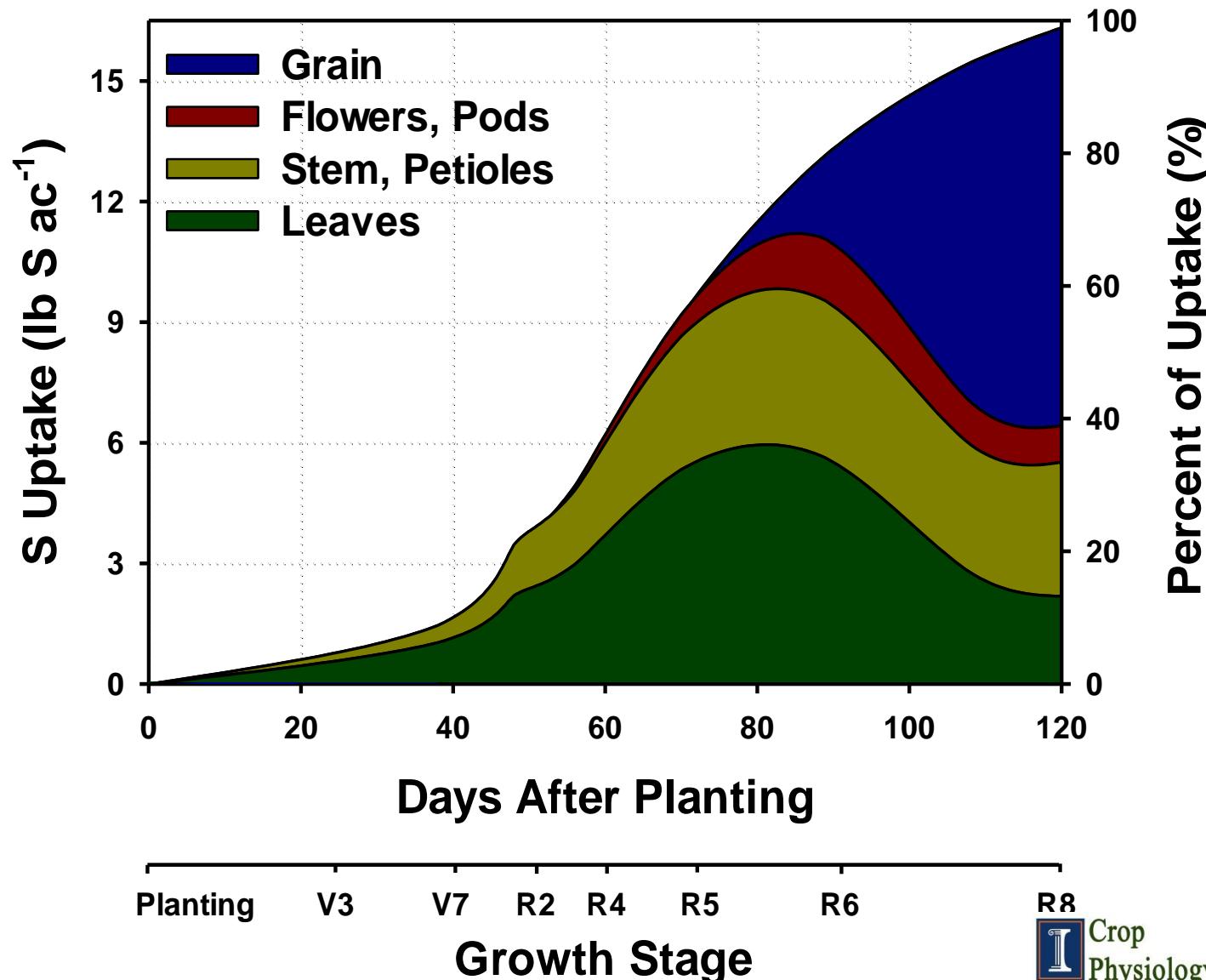
Sulfur Sources

- Atmospheric deposition = 2-3 lbs S/A
- Soil organic matter (~95%) = 3-5 lbs S/A per %OM
- Soil solution (adsorbed - AEC)
- Crop residue (corn vs soybean)

Corn & Soybean Sulfur Needs



	Corn (215 bu/A)	Soybean (65 bu/A)
Need	lbs/A	
Uptake	22	18
Removal	12	11
Supply		
Atmosphere	2	2
Organic matter (3.7%)	15	15


Sulfur Uptake for Corn Yielding 230 Bu Ac⁻¹

- Maximum uptake rate (V10-V14) = **0.62 lbs/A day**
- 25% of total sulfur taken up in 10 days (~6 lbs)

Sulfur Uptake for Soybean Yielding 60 Bu Ac⁻¹

- Maximum uptake rate (R4) = **0.25 lbs/A day**
- Season long S uptake

Sulfur on Soybean vs Corn

Corn max. uptake rate is 148% higher than Soybean

> demand

Maximum S Uptake Rate
0.25 lbs S/A day (60bu)

Soil mineralization

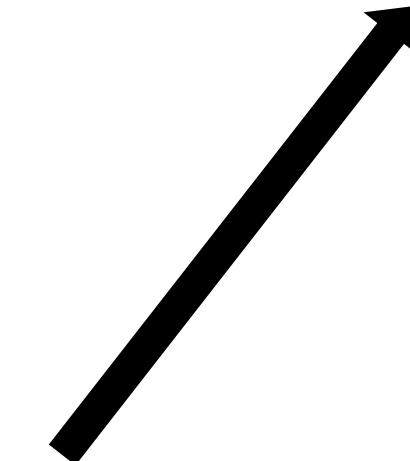
< demand

Maximum S Uptake Rate
0.62 lbs S/A day (230 bu)

Sulfur Fertilization Strategy For Soybean

- Fertilization usually not responsive for soybean in IL when growing for average yield (~60 bu/A)
- Don't fertilize?
- Grain removal = depletion of the organic S pool
- **Fertilize corn and residual S for soybean**

Corn & Soybean Sulfur Needs

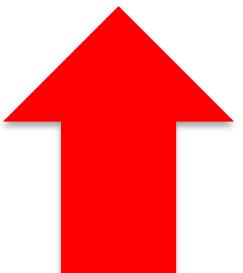

	Corn (215 bu/A)	Soybean (65 bu/A)
Need		lbs/A
Uptake	22	18
Removal	12	11
Supply		
Atmosphere	2	2
Organic matter (3.7%)	15	15
Deficit	5	1

Corn & Soybean Sulfur Needs

	Corn (230 bu/A)	Soybean (60 bu/A)
Need		lbs/A
Uptake	22	18
Removal	12	11
Supply		
Atmosphere	2	2
Organic matter (3.7%)	15	15
Fertilizer	20	
Deficit/Surplus		15

Corn & Soybean Sulfur Needs

	Corn (230 bu/A)	Soybean (60 bu/A)
Need	lbs/A	
Uptake	22	18
Removal	12	11
Supply		
Atmosphere	2	2
Organic matter (3.7%)	15	15
Fertilizer	20	15
Deficit/Surplus	15	


Sulfur Fertilization Strategy For Corn/Soybean Rotation

- Sulfur application for corn have shown to also benefit soybean the following year without applying sulfur to the soybean crop. Soybean tends to scavenge and recycle sulfur better than corn (Kaiser and Strok, 2018)**

Where to expect response to S Fertilization

- Soils with low OM%
- Sandy soils
- High precipitation and well drained soils
- High nitrogen loss induces S response
- No history of manure application
- **High yields**

Sulfur on Soybean & Corn

Higher yield = S requirement & uptake rate

**Your soil might not
keep up with the
plant demand!**

High Yielding Soybean

"In order to produce high soybean yields, a systems approach must be taken, combining various management factors to optimize yield."

2022 - Six Secrets of 80 Bushel Soybean

Rank	Factor	Value bu/acre
1	Weather (Planting date)	35+
2	Genetics/Variety	25
3	Row Spacing	9
4	Foliar Protection	5
5	Fertility	4
6	Seed Treatment	2
TOTAL		80 bu

Given key prerequisites

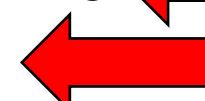
Soybean S Sources & Timing Treatments

Fall or Spring	UTC (0 S)
	AMS
	MES10
	Polyhalite
	Sus-terra
	Gypsum
	X

All sulfur fertilizers applied at 20 lbs. S acre⁻¹

All treatments balanced for N (18), P (80), and K (60).

Soybean S Sources & Timing


Trial Information

Soil Test

OM	CEC	pH	P [†]	K	Ca	Mg	S	Zn	Mn	Fe	Cu	B
%	meq/100g	units					ppm					
4.7	29.9	6.0	48	144	3626	792	14	2	19	185	3.3	0.8

[†] Mehlich-3 extraction

- Fall Fertilization → November 6th, 2020
- Spring Fertilization → April 2nd, 2021
- Planting Date → April 2nd, 2021
- Population → 160,000/A
- Variety → GH3582E3
- Fungicide + Insecticide @ R3

Effect of S Source and Fertilization Timing on Soybean Grain Yield

Treatment	Grain Yield	
	Fall	Spring
	bushels/acre	
UTC	89.2	Δ UTC
AMS		+3.1
MES10		+0.8
Polyhalite		+1.5
Sus-terra		+1.9
Gypsum		+1.9
Average		

LSD_{timing} (.10) = 1.4; LSD_{source x timing} (.10) = NS

Champaign, 2021

Effect of S Source and Fertilization Timing on Soybean Grain Yield

Treatment	Grain Yield		
	Fall	Spring	
		bushels/acre	
UTC	89.2	87.8	△ UTC
AMS	92.3	88.9	+1.1
MES10	90.0	86.5	-1.3
Polyhalite	90.7	90.3	+2.5
Sus-terra	91.1	88.7	+0.9
Gypsum	91.1	88.7	+0.9
Average	90.7	88.5	

LSD_{timing} (.10) = 1.4; LSD_{source x timing} (.10) = NS

Champaign, 2021

Effect of S Source on Soybean Grain Quality

Treatment	Oil	Protein	
		% -----	
UTC	20.8		32.5
AMS	20.6		32.9
MES10	20.7		33.0
Polyhalite	20.7		32.8
Sus-terra	20.7		32.9
Gypsum	20.6		33.0
LSD (.10)	0.1		0.3

Key Takeaways

- Maintaining adequate levels of sulfur through fertilization is essential to prevent depletion of organic sulfur.
- Corn tends to be more responsive to sulfur fertilization, likely due to its higher uptake rate.
- High-yielding soybeans generally exhibit greater responsiveness to sulfur fertilization.

Crop Physiology Laboratory Team – 2022

Principal Investigator

- Dr. Fred Below

Postdoctoral Research Associate

- Dr. Connor Sible

Principal Research Specialist

- Juliann Seebauer

Field Technician / MS Student

- Jared Fender

Ph.D. Students

- Logan Woodward
- Marcos Loman

Master's Students

- Sam Leskanich
- Darby Danzl

Visiting Research Scholars

- Fabrício Geraldini
- Fábio van de Groes Swart

Undergraduate Research Interns

- Molly Schempp
- Thomas Alwardt

**Special thanks to the Fluid Fertilizer
Foundation!**

For More Information:

Crop Physiology Laboratory

University of Illinois

<http://cropphysiology.cropsci.illinois.edu>

